

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	nmeta 0.2.0 documentation

 [image: _images/nmeta.png]

nmeta

The nmeta project is a research platform for traffic classification on
Software Defined Networking (SDN). Read More

Contents:

	Introduction
	Limitations

	Feature Enhancement Wishlist

	Privacy Considerations

	Disclaimer

	How to Contribute

	How it Works

	Install
	Pre-Work

	Install Ryu OpenFlow Controller

	Install Packages Required by nmeta

	Install nmeta

	Run nmeta

	Aliases

	Quick Start Guide

	Configure Nmeta
	System Configuration

	Configure Main Policy

	API Guide
	Example API Calls

	Logging

	Data Structures
	Information Abstractions

	Database Collections

	Code Structure
	High Level

	Code Documentation
	nmeta module

	tc_policy module

	tc_static module

	tc_identity module

	tc_custom module

	api module

	api_external module

	config module

	flows module

	identities module

	forwarding module

	switch_abstraction module

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

Introduction

The nmeta (pronounced en-meta) project is founded on the belief that
innovation in networks requires a foundation layer of knowledge
about both the participants and their types of conversation.

Today, networks generally have only a limited view of participants
and conversation types

[image: _images/nmeta_concept.png]
The goal of the nmeta project is to produce network metadata enriched with
participant identities and conversation types to provide a foundation for
innovation in networking.

The production of enriched network metadata requires policy-based control,
and ability to adapt to new purposes through extensibility.

Enriched network metadata has a number of uses, including classifying flows
for QoS, billing, traffic engineering, troubleshooting and security.

[image: _images/flow_metadata_screenshot3.png]
Nmeta is a research platform for traffic classification on Software Defined
Networking (SDN). It runs on top of the Ryu SDN controller
(see: http://osrg.github.io/ryu/).

Limitations

Nmeta does not scale well. Every new flow has a processing overhead, and this
workload cannot be scaled horizontally on the controller. The nmeta2 system is
being developed to address this limitation.

Feature Enhancement Wishlist

See Issues [https://github.com/mattjhayes/nmeta/issues] for list of
enhancements and bugs

Privacy Considerations

Collecting network metadata brings with it ethical and legal considerations
around privacy. Please ensure that you have permission to monitor traffic
before deploying this software.

Disclaimer

This code carries no warrantee whatsoever. Use at your own risk.

How to Contribute

Code contributions and suggestions are welcome. Enhancement or bug fixes
can be raised as issues through GitHub.

Please get in touch if you want to be added as a contributor to the project:

Email: Nmeta Maintainer

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

How it Works

Nmeta uses OpenFlow Software-Defined Networking (SDN) to selectively control
flows through switches so that packets can be classified and actions taken.
It instructs connected OpenFlow switches to send packets from unknown flows
to the Ryu SDN Controller, on which nmeta runs, for analysis.

[image: _images/nmeta_logical_core.png]
Nmeta configures a single flow table per switch with a table-miss
flow entry (FE) that sends full unmatched packets to the controller. As flows
are classified, specific higher-priority FEs are configured to suppress
sending further packets to the controller.

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

Install

This guide is for installing on Ubuntu.

Pre-Work

Ensure packages are up-to-date

sudo apt-get update
sudo apt-get upgrade

Install Python pip

sudo apt-get install python-pip

Install git

Install git and git-flow for software version control:

sudo apt-get install git git-flow

Install Ryu OpenFlow Controller

Ryu is the OpenFlow Software-Defined Networking (SDN) controller application
that handles communications with the switch:

sudo pip install ryu

Install Packages Required by nmeta

Install dpkt library

The dpkt library is used to parse and build packets:

sudo pip install dpkt

Install pytest

Pytest is used to run unit tests:

sudo apt-get install python-pytest

Install YAML

Install Python YAML (“YAML Ain’t Markup Language”) for parsing config
and policy files:

sudo apt-get install python-yaml

Install simplejson

sudo pip install simplejson

Install eve

Eve is used to power the external API

pip install eve

Install coloredlogs

Install coloredlogs to improve readability of terminal logs by colour-coding:

sudo pip install coloredlogs

TBD

mongodb + pymongo

Install nmeta

Clone nmeta

cd
git clone https://github.com/mattjhayes/nmeta.git

Run nmeta

cd
cd ryu
PYTHONPATH=. ./bin/ryu-manager ../nmeta/nmeta/nmeta.py

Aliases

Aliases can be used to make it easier to run common commands.
To add the aliases, edit the .bash_aliases file in your home directory:

cd
sudo vi .bash_aliases

Paste in the following:

Run nmeta:
alias nm="cd; cd ryu; PYTHONPATH=. ./bin/ryu-manager ../nmeta/nmeta/nmeta.py"
#
Retrieve nmeta network metadata:
alias idmac="sudo python nmeta/misc/jsonpretty.py http://127.0.0.1:8080/nmeta/identity/mac/"
alias idip="sudo python nmeta/misc/jsonpretty.py http://127.0.0.1:8080/nmeta/identity/ip/"
alias idsvc="sudo python nmeta/misc/jsonpretty.py http://127.0.0.1:8080/nmeta/identity/service/"
alias idsys="sudo python nmeta/misc/jsonpretty.py http://127.0.0.1:8080/nmeta/identity/systemtable/"
alias idnic="sudo python nmeta/misc/jsonpretty.py http://127.0.0.1:8080/nmeta/identity/nictable/"

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

Quick Start Guide

[image: _images/quickstart_number_1.png]
First, you’ll need an OpenFlow Network with one or more switches.
If you don’t have a suitable one to hand then consider building the virtual
lab in the Extras section

[image: _images/quickstart_number_2.png]
Next, you’ll need an SDN Controller to run the control plane of the
network and host the nmeta application. If you built the virtual lab then
you’ve already got this covered.

If not, build a physical or virtual server. The preferred OS is Ubuntu.
Now install Ryu and nmeta as per the Install Guide

[image: _images/quickstart_number_3.png]
You’ll need some participants (hosts) on your network. Again, if you’ve
built the virtual lab you’re already covered for this.

If not, decide what types and numbers of hosts you want on your network,
then connect them up.

[image: _images/quickstart_number_4.png]
Configure nmeta as per the Config Guide

[image: _images/quickstart_number_5.png]
Run nmeta:

cd
cd ryu
PYTHONPATH=. ./bin/ryu-manager ../nmeta/nmeta.py

Now start experimenting. Use the calls in the aliases to show network metadata

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

Configure Nmeta

System Configuration

A YAML file holds the system configuration. It’s location is:

~/nmeta/nmeta/config/config.yaml

Configure Main Policy

The main policy configures how nmeta works with data plane traffic.
This includes traffic classification rules.
The main policy is stored in the YAML file:

~/nmeta/nmeta/config/main_policy.yaml

It is used to control what classifiers are used, in what order and what
actions are taken.

The traffic classification policy is based off a root key tc_rules.
This root contains a ruleset name (only one ruleset supported at this
stage), which in turn contains one or more rules.

Rules are an ordered list (denoted by preceding dash). Each rule contains:

	Comment

	A comment to describe the purpose of the rule (optional). A
comment must start with the attribute comment: and any single-line string
can follow

	Match Type

	A match type is one of any or all

	Conditions List

	A single conditions_list stanza that contains one or more
conditions stanzas

Example simple traffic classification policy with a single rule:

[image: _images/simple_tc_policy.png]
A conditions_list stanza contains:

	A match type, consisting of any or all

	One or more conditions as list items (denoted by dash preceding the
first item)

	One or more classifiers (see below)

A conditions stanza is a list item in a conditions list and contains:

	A match type, consisting of any or all

	One or more classifiers (see below)

A actions stanza contains one or more attribute/value pairs

Here is a more complex traffic classification policy:

[image: _images/complex_tc_policy.png]
Conditions invoke classifiers. There are three types of classifier supported:

	Static

	Identity

	Custom (Payload / Statistical / Multi-classifier)

Static Classifiers

Static classifiers match on attributes in packet headers, or on environmental
attributes such as port numbers.

Supported attributes are:

	eth_src:	Ethernet source MAC address.

Example:

eth_src: 08:00:27:4a:2d:41

	eth_dst:	Ethernet destination MAC address.

Example:

eth_dst: 08:00:27:4a:2d:42

	eth_type:	Ethernet type. Can be in hex (starting with 0x) or decimal.

Examples:

eth_type: 0x0800

eth_type: 35020

	ip_src:	IP source address. Can be a single address, a network with a mask in
CIDR notation, or an IP range with two addresses separated by a hyphen.
Both addresses in a range must be the same type, and the second
address must be higher than the first.

Examples:

ip_src: 192.168.56.12

ip_src: 192.168.56.0/24

ip_src: 192.168.56.12-192.168.56.31

	ip_dst:	IP destination address. Can be a single address, a network with a
mask in CIDR notation, or an IP range with two addresses separated by a
hyphen. Both addresses in a range must be the same type, and the second
address must be higher than the first.

Examples:

ip_dst: 192.168.57.40

ip_dst: 192.168.57.0/24

ip_dst: 192.168.57.36-192.168.78.31

	tcp_src:	TCP source port.

Example:

tcp_src: 22

	tcp_dst:	TCP destination port.

Example:

tcp_dst: 80

Identity Classifiers

All identity classifiers are prefixed with:

identity_

LLDP systemname may be matched as a regular expression.
The match pattern must be contained in single
quotes. For example, to match system names of *.audit.example.com, add this
policy condition:

identity_lldp_systemname_re: '.*\.audit\.example\.com'

Supported attributes are:

	identity_lldp_systemname:

		Exact match against a system name discovered
via LLDP. Example:

identity_lldp_systemname: bob.example.com

	identity_lldp_systemname_re:

		Regular expression match against a system name
discovered via LLDP. Example:

identity_lldp_systemname_re: '.*\.audit\.example\.com'

	identity_service_dns:

		
	Exact match of either IP address in a flow against a

	DNS domain. Example:

identity_service_dns: www.example.com

	identity_service_dns_re:

		Regular expression match of either IP address in
a flow against a DNS domain. Example:

identity_service_dns_re: '.*\.example\.com'

Custom Classifiers

Nmeta supports the creation of custom classifiers.

All custom classifiers have the attribute:

custom

The value determines the custom .py file to load from the nmeta/classifiers
directory

For example, the following condition loads a custom classifier file ~/nmeta/nmeta/classifiers/statistical_qos_bandwidth_1.py:

custom: statistical_qos_bandwidth_1

Actions

Actions are specific to a rule, and define what nmeta should do when the rule is matched.

Supported attributes are:

	qos_treatment:	Specify QoS treatment for flow.

Example:

qos_treatment: classifier_return

Values can be:

	default_priority

	constrained_bw

	high_priority

	low_priority

	classifier_return

	set_desc:	Set description for the flow. This is a convenience for humans.

Example:

set_desc: "This is a flow type description"

QoS Treatment

Quality of Service (QoS) treatment parameters are configured in main policy
under the qos_treatment root directive. They map qos action values to
queue numbers. Example:

qos_treatment:
 # Control Quality of Service (QoS) treatment mapping of
 # names to output queue numbers:
 default_priority: 0
 constrained_bw: 1
 high_priority: 2
 low_priority: 3

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

API Guide

The nmeta API provides HTTP read access (no write at this stage) to data
within nmeta. Data includes:

	Conversation Type Metadata

	The types of conversations that are occuring over the network

	Participant Metadata

	Who and what is connected to the network

	Performance Metrics

	How the system is performing

Here is a visualisation of the API hierarchy:

[image: _images/api_hierarchy.png]
To return the JSON in a human-friendly format, precede the API call with the
jsonpretty.py script (requires install of simplejson):

sudo python ~/nmeta/misc/jsonpretty.py API_CALL_HERE

Example API Calls

Example API Calls to run on local host (jsonpretty.py omitted for brevity):

Conversation Type Metadata

Return the Flow Metadata Table:

http://127.0.0.1:8080/nmeta/flowtable/

Returns the whole flow table - use with caution due to load considerations

Participant Metadata

Return the Identity MAC structure:

http://127.0.0.1:8080/nmeta/identity/mac/

Return the Identity IP structure:

http://127.0.0.1:8080/nmeta/identity/ip/

Return the Identity Service structure:

http://127.0.0.1:8080/nmeta/identity/service/

Return the Identity NIC Table (old - will be deprecated at some stage):

http://127.0.0.1:8080/nmeta/identity/nictable/

Return the Identity System Table (old - will be deprecated at some stage):

http://127.0.0.1:8080/nmeta/identity/systemtable/

Performance Metrics

Return the Flow Metadata table size as number of rows:

http://127.0.0.1:8080/nmeta/measurement/tablesize/rows/

Return the rate at which nmeta is processing events from switches, as events
per second:

http://127.0.0.1:8080/nmeta/measurement/eventrates/

Return statistics on nmeta per-packet processing time:

http://127.0.0.1:8080/nmeta/measurement/metrics/packet_time/

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

Logging

Logging is controlled by the system configuration YAML file:

~/nmeta/nmeta/config/config.yaml

Logging is separately configured for syslog and to the console, and levels
are configurable per Python module. The log format is also customisable.

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

Data Structures

Nmeta uses various data structures to store network metadata related
to participants and flows (conversations).

High level abstractions of participants and flows abstract the details
of the various MongoDB collections.

Information Abstractions

Flows Abstraction

The flows object provides an abstraction of flows (conversations) that
have been seen on the network. Flow metrics are in the context of the flow
that the last packet-in ingested packet belonged to. The packet context
is likewise that of the packet from that event.

[image: _images/flows_abstraction.png]
Classifiers can make use of the flows object to gain easy access to
features of the current flow.

Identities Abstraction

The identities object provides an abstraction for participants (identities)
that are known to nmeta. Classifiers can use the identities object to
look up the identity information of participants.

[image: _images/identities_abstraction.png]

Database Collections

Nmeta uses capped MongoDB database collections to obviate the need
to maintain size by pruning old entries.

Packet-Ins

MongoDB Collection: packet_ins

[image: _images/data_struct_packet_ins.png]

Classifications

MongoDB Collection: classifications

[image: _images/data_struct_classifications.png]

Identity Metadata

MongoDB Collection: identities

[image: _images/data_struct_identities.png]

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

Code Structure

High Level

[image: _images/nmeta_code_structure_simple.png]

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

Code Documentation

	nmeta module

	tc_policy module

	tc_static module

	tc_identity module

	tc_custom module

	api module

	api_external module

	config module

	flows module

	identities module

	forwarding module

	switch_abstraction module

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

 	Code Documentation

nmeta module

This is the main module of the nmeta suite running on top of Ryu SDN controller
to provide network identity and flow (traffic classification) metadata
.
Do not use this code for production deployments - it is proof of concept code
and carries no warrantee whatsoever. You have been warned.

	
class nmeta.NMeta(*args, **kwargs)

	Bases: ryu.base.app_manager.RyuApp, baseclass.BaseClass

This is the main class used to run nmeta

	
OFP_VERSIONS = [1, 4]

	

	
_CONTEXTS = {'wsgi': <class 'ryu.app.wsgi.WSGIApplication'>}

	

	
_add_flow(ev, in_port, out_port, out_queue)

	Add a flow entry to a switch
Prefer to do fine-grained match where possible

	
_port_status_handler(ev)

	Switch Port Status event

	
desc_stats_reply_handler(ev)

	Receive a reply from a switch to a description
statistics request

	
error_msg_handler(ev)

	A switch has sent us an error event

	
flow_removed_handler(ev)

	A switch has sent an event to us because it has removed
a flow from a flow table

	
packet_in(ev)

	This method is called for every Packet-In event from a Switch.
We receive a copy of the Packet-In event, pass it to the
traffic classification area for analysis, work out the forwarding,
update flow metadata, then add a flow entry to the switch (when
appropriate) to suppress receiving further packets on this flow.
Finally, we send the packet out the switch port(s) via a
Packet-Out message, with appropriate QoS queue set.

	
switch_connection_handler(ev)

	A switch has connected to the SDN controller.
We need to do some tasks to set the switch up properly
such as setting it’s config for fragment handling
and table miss packet length and requesting the
switch description

	
nmeta.ipv4_text_to_int(ip_text)

	Takes an IP address string and translates it
to an unsigned integer

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

 	Code Documentation

tc_policy module

This module is part of the nmeta suite running on top of Ryu SDN controller
to provide network identity and flow (Traffic Classification - TC) metadata.
It expects a file called “main_policy.yaml” to be in the config subdirectory
containing properly formed YAML that conforms the the particular specifications
that this program expects. See constant tuples at start of program for valid
attributes to use.

	
class tc_policy.TrafficClassificationPolicy(config, pol_dir='config', pol_file='main_policy.yaml')

	Bases: baseclass.BaseClass

This class is instantiated by nmeta.py and provides methods
to ingest the policy file main_policy.yaml and check flows
against policy to see if actions exist

	
class Condition

	Bases: object

An object that represents a traffic classification condition,
including any decision collateral on match test

	
to_dict()

	Return a dictionary object of the condition object

	
class TrafficClassificationPolicy.Conditions

	Bases: object

An object that represents traffic classification conditions,
including any decision collateral on matches and actions

	
to_dict()

	Return a dictionary object of the condition object

	
class TrafficClassificationPolicy.Rule

	Bases: object

An object that represents a traffic classification rule
(a set of conditions), including any decision collateral
on matches and actions

	
to_dict()

	Return a dictionary object of the condition object

	
TrafficClassificationPolicy.check_policy(flow, ident)

	Passed a flows object, set in context of current packet-in event,
and an identities object.
Check if packet matches against any policy
rules and if it does, update the classifications portion of
the flows object to reflect details of the classification.

	
TrafficClassificationPolicy.qos(qos_treatment)

	Passed a QoS treatment string and return the relevant
QoS queue number to use, otherwise 0. Works by lookup
on qos_treatment section of main_policy

	
TrafficClassificationPolicy.validate_policy()

	Check main policy to ensure that it is in
correct format so that it won’t cause unexpected errors during
packet checks.

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

 	Code Documentation

tc_static module

This module is part of the nmeta suite running on top of Ryu SDN controller
to provide network identity and flow (traffic classification) metadata

	
class tc_static.StaticInspect(config)

	Bases: baseclass.BaseClass

This class is instantiated by tc_policy.py
(class: TrafficClassificationPolicy) and provides methods to
query static traffic classification matches

	
check_static(condition, pkt)

	Passed condition and flows packet objects
Update the condition match with boolean of result
of match checks

	
is_match_ethertype(value_to_check1, value_to_check2)

	Passed a two prospective EtherTypes and check to
see if they are the same.
Return 1 for both the same EtherType and 0 for different
Values can be hex or decimal and are 2 bytes in length

	
is_match_ip_space(ip_addr, ip_space)

	Passed an IP address and an IP address space and check
if the IP address belongs to the IP address space.
If it does return 1 otherwise return 0

	
is_match_macaddress(value_to_check1, value_to_check2)

	Passed a two prospective MAC addresses and check to
see if they are the same address.
Return 1 for both the same MAC address and 0 for different

	
is_valid_ethertype(value_to_check)

	Passed a prospective EtherType and check that
it is valid. Can be hex (0x*) or decimal
Return 1 for is valid IP address and 0 for not valid

	
is_valid_ip_space(value_to_check)

	Passed a prospective IP address and check that
it is valid. Can be IPv4 or IPv6 and can be range or have CIDR mask
Return 1 for is valid IP address and 0 for not valid

	
is_valid_macaddress(value_to_check)

	Passed a prospective MAC address and check that
it is valid.
Return 1 for is valid IP address and 0 for not valid

	
is_valid_transport_port(value_to_check)

	Passed a prospective TCP or UDP port number and check that
it is an integer in the correct range.
Return 1 for is valid port number and 0 for not valid port
number

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

 	Code Documentation

tc_identity module

This module is part of the nmeta suite running on top of Ryu SDN controller
to provide network identity and flow (traffic classification) metadata

	
class tc_identity.IdentityInspect(config)

	Bases: baseclass.BaseClass

This class is instantiated by tc_policy.py
(class: TrafficClassificationPolicy) and provides methods to
ingest identity updates and query identities

	
check_dns(dns_name, pkt, ident, is_regex=False)

	Passed a DNS name, flows packet object, an instance of
the identities class and a regex boolean (if true, DNS name
is treated as regex).
Return True or False based on whether or not the packet has
a source or destination IP address that has been resolved from the
DNS name. Uses methods of the Identities class to work this out.
Returns boolean

	
check_identity(condition, pkt, ident)

	Checks if a given packet matches a given identity match rule.
Passed condition, flows packet and identities objects and
update the condition match based on whether or not either
of the packet IP addresses matches the identity attribute/value.
Uses methods of the Identities class to work this out

	
check_lldp(host_name, pkt, ident, is_regex=False)

	Passed a hostname, flows packet object, an instance of
the identities class and a regex boolean (if true, hostname
is treated as regex).
Return True or False based on whether or not the packet has
a source or destination IP address that matches the IP address
registered to the given hostname (if one even exists).
Uses methods of the Identities class to work this out.
Returns boolean

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

 	Code Documentation

tc_custom module

This module is part of the nmeta suite running on top of Ryu SDN controller
to provide network identity and flow (traffic classification) metadata

	
class tc_custom.CustomInspect(config)

	Bases: baseclass.BaseClass

This class is instantiated by tc_policy.py
(class: TrafficClassificationPolicy) and provides methods to
run custom traffic classification modules

	
check_custom(condition, flow, ident)

	Passed condition, flows and identities objects.
Call the named custom classifier with these values so that it
can update the condition match as appropriate.

	
instantiate_classifiers(custom_list)

	Dynamically import and instantiate classes for any
custom classifiers specified in the controller
nmeta2 main_policy.yaml

Passed a deduplicated list of custom classifier names
(without .py) to load.

Classifier modules live in the ‘classifiers’ subdirectory

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

 	Code Documentation

api module

This module is part of the nmeta suite running on top of Ryu SDN
controller to provide network identity and flow metadata.
It provides methods for RESTful API connectivity.

	
class api.Api(_nmeta, _config, _wsgi)

	Bases: object

This class is instantiated by nmeta.py and provides methods
for RESTful API connectivity.

	
IP_PATTERN = '\\b(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)(\\.|$){4}\\b'

	

	
url_data_size_rows = '/nmeta/measurement/tablesize/rows/'

	

	
url_flowtable = '/nmeta/flowtable/'

	

	
url_flowtable_augmented = '/nmeta/flowtable/augmented/'

	

	
url_flowtable_by_ip = '/nmeta/flowtable/{ip}'

	

	
url_identity_ip = '/nmeta/identity/ip/'

	

	
url_identity_mac = '/nmeta/identity/mac/'

	

	
url_identity_nic_table = '/nmeta/identity/nictable/'

	

	
url_identity_service = '/nmeta/identity/service/'

	

	
url_identity_system_table = '/nmeta/identity/systemtable/'

	

	
url_measure_event_rates = '/nmeta/measurement/eventrates/'

	

	
url_measure_pkt_time = '/nmeta/measurement/metrics/packet_time/'

	

	
exception api.NotFoundError(msg=None, **kwargs)

	Bases: ryu.exception.RyuException

	
message = 'Error occurred talking to function <TBD>'

	

	
class api.RESTAPIController(req, link, data, **config)

	Bases: ryu.app.wsgi.ControllerBase

This class is used to control REST API access to the
nmeta data and control functions

	
get_data_structure_size_rows(*args, **kwargs)

	Run a REST command and return
appropriate response

	
get_event_rates(*args, **kwargs)

	Run a REST command and return
appropriate response

	
get_id_ip(*args, **kwargs)

	Run a REST command and return
appropriate response

	
get_id_mac(*args, **kwargs)

	Run a REST command and return
appropriate response

	
get_id_service(*args, **kwargs)

	Run a REST command and return
appropriate response

	
get_packet_time(*args, **kwargs)

	Run a REST command and return
appropriate response

	
list_flow_table(*args, **kwargs)

	Run a REST command and return
appropriate response

	
list_flow_table_augmented(*args, **kwargs)

	Run a REST command and return
appropriate response

	
list_flow_table_by_IP(*args, **kwargs)

	Run a REST command and return
appropriate response

	
list_identity_nic_table(*args, **kwargs)

	Run a REST command and return
appropriate response

	
list_identity_system_table(*args, **kwargs)

	Run a REST command and return
appropriate response

	
api.rest_command(func)

	REST API command template

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

 	Code Documentation

api_external module

The api_external module is part of the nmeta suite, but is run
separately

This module runs a class and methods for an API that
exposes an interface into nmeta MongoDB collections.

It leverages the Eve Python REST API Framework

	
class api_external.ExternalAPI(config)

	Bases: baseclass.BaseClass

This class provides methods for the External API

	
ingest_dictionary(filename)

	Read text file that is in dictionary format into a Python
dictionary object. Uses ast module.

	
m_pi_rate_response(items)

	Update the response with the packet_in rate.
Hooked from on_fetched_resource_<name>

	
on_inserted_callback(resource_name, items)

	Runs on Decision API database inserts, after database insertion
completed. It places a message onto the multi-process queue
that contains link to resource in database

	
post_get_callback(resource, request, payload)

	TBD

	
pre_get_callback(resource, request, lookup)

	Runs on GET request pre database lookup

	
run()

	Run the External API instance

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

 	Code Documentation

config module

This module is part of the nmeta suite running on top of the
Ryu SDN controller to provide network identity and flow
(traffic classification) metadata.
It expects a file called “config.yaml” to be in the same directory
containing properly formed YAML

	
class config.Config(config_dir='config', config_filename='config.yaml')

	Bases: object

This class is instantiated by nmeta.py and provides methods to
ingest the configuration file and provides access to the
keys/values that it contains.
Config file is in YAML in config subdirectory and is
called ‘config.yaml’

	
get_value(config_key)

	Passed a key and see if it exists in the config YAML. If it does
then return the value, if not return 0

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

 	Code Documentation

flows module

The flows module is part of the nmeta suite

It provides an abstraction for conversations (flows), using
a MongoDB database for storage and data retention maintenance.

Flows are identified via an indexed bi-directionally-unique
hash value, derived from IP-value-ordered 5-tuple (source and
destination IP addresses, IP protocol and transport source and
destination port numbers).

Ingesting a packet puts the flows object into the context of the
packet that flow belongs to, and updates the database object for
that flow with information from the current packet.

There are various methods (see class docstring) that provide views
into the state of the flow.

	
class flows.Flow(config)

	Bases: baseclass.BaseClass

An object that represents a flow that we are classifying

Intended to provide an abstraction of a flow that classifiers
can use to make determinations without having to understand
implementations such as database lookups etc.

Be aware that this module is not very mature yet. It does not
cover some basic corner cases such as packet retransmissions and
out of order or missing packets.

Read a packet_in event into flows (assumes class instantiated as
an object called ‘flow’):

flow.ingest_packet(dpid, in_port, pkt, timestamp)

Variables available for Classifiers (assumes class instantiated as
an object called ‘flow’):

Variables for the current packet:

	flow.packet.flow_hash

	The hash of the 5-tuple of the current packet

	flow.packet.packet_hash

	The hash of the current packet used for deduplication.
It is an indexed uni-directionally packet identifier,
derived from ip_src, ip_dst, proto, tp_src, tp_dst,
tp_seq_src, tp_seq_dst

	flow.packet.dpid

	The DPID that the current packet was received from
via a Packet-In message

	flow.packet.in_port

	The switch port that the current packet was received on
before being sent to the controller

	flow.packet.timestamp

	The time in datetime format that the current packet was
received at the controller

	flow.packet.length

	Length in bytes of the current packet on wire

	flow.packet.eth_src

	Ethernet source MAC address of current packet

	flow.packet.eth_dst

	Ethernet destination MAC address of current packet

	flow.packet.eth_type

	Ethertype of current packet in decimal

	flow.packet.ip_src

	IP source address of current packet

	flow.packet.ip_dst

	IP destination address of current packet

	flow.packet.proto

	IP protocol number of current packet

	flow.packet.tp_src

	Source transport-layer port number of current packet

	flow.packet.tp_dst

	Destination transport-layer port number of current packet

	flow.packet.tp_flags

	Transport-layer flags of the current packet

	flow.packet.tp_seq_src

	Source transport-layer sequence number (where existing)
of current packet

	flow.packet.tp_seq_dst

	Destination transport-layer sequence number (where existing)
of current packet

	flow.packet.payload

	Payload data of current packet

	flow.packet.tcp_fin()

	True if TCP FIN flag is set in the current packet

	flow.packet.tcp_syn()

	True if TCP SYN flag is set in the current packet

	flow.packet.tcp_rst()

	True if TCP RST flag is set in the current packet

	flow.packet.tcp_psh()

	True if TCP PSH flag is set in the current packet

	flow.packet.tcp_ack()

	True if TCP ACK flag is set in the current packet

	flow.packet.tcp_urg()

	True if TCP URG flag is set in the current packet

	flow.packet.tcp_ece()

	True if TCP ECE flag is set in the current packet

	flow.packet.tcp_cwr()

	True if TCP CWR flag is set in the current packet

Variables for the whole flow:

	flow.packet_count()

	Unique packets registered for the flow

	flow.client()

	The IP that is the originator of the flow (if known,
otherwise 0)

	flow.server()

	The IP that is the destination of the flow (if known,
otherwise 0)

	flow.packet_direction()

	c2s (client to server) or s2c directionality based on first observed
packet direction in the flow. Source of first packet in flow is
assumed to be the client

	flow.max_packet_size()

	Size of largest packet in the flow

	flow.max_interpacket_interval()

	TBD

	flow.min_interpacket_interval()

	TBD

Variables for the whole flow relating to classification:

classification.TBD

	Challenges (not handled - yet):

	
	duplicate packets due to retransmissions or multiple switches
in path

	IP fragments

	Flow reuse - TCP source port reused

	
class Classification(flow_hash, clsfn, time_limit)

	Bases: object

An object that represents an individual traffic classification

	
commit()

	Record current state of flow classification into MongoDB
classifications collection.

	
dbdict()

	Return a dictionary object of traffic classification
parameters for storing in the database

	
class Flow.Packet

	Bases: object

An object that represents the current packet

	
dbdict()

	Return a dictionary object of metadata
parameters of current packet (excludes payload),
for storing in database

	
tcp_ack()

	Does the current packet have the TCP ACK flag set?

	
tcp_cwr()

	Does the current packet have the TCP CWR flag set?

	
tcp_ece()

	Does the current packet have the TCP ECE flag set?

	
tcp_fin()

	Does the current packet have the TCP FIN flag set?

	
tcp_psh()

	Does the current packet have the TCP PSH flag set?

	
tcp_rst()

	Does the current packet have the TCP RST flag set?

	
tcp_syn()

	Does the current packet have the TCP SYN flag set?

	
tcp_urg()

	Does the current packet have the TCP URG flag set?

	
Flow.client()

	The IP that is the originator of the flow (if known,
otherwise 0)

Finds first packet seen for the flow_hash within the time limit
and returns the source IP

	
Flow.ingest_packet(dpid, in_port, pkt, timestamp)

	Ingest a packet into the packet_ins collection and put the flow object
into the context of the packet.
Note that timestamp MUST be in datetime format

	
Flow.max_interpacket_interval()

	Return the size of the largest inter-packet time interval
in the flow (assessed per direction in flow) as seconds
(type float)

Note:
c2s = client to server direction
s2c = server to client direction

Note: results are slightly inaccurate due to floating point
rounding.

	
Flow.max_packet_size()

	Return the size of the largest packet in the flow (in either direction)

	
Flow.min_interpacket_interval()

	Return the size of the smallest inter-packet time interval
in the flow (assessed per direction in flow) as seconds
(type float)

Note:
c2s = client to server direction
s2c = server to client direction

Note: results are slightly inaccurate due to floating point
rounding.

	
Flow.packet_count()

	Return the number of packets in the flow (counting packets in
both directions). This method should deduplicate for where the
same packet is received from multiple switches, but is TBD...

Works by retrieving packets from packet_ins database with
current packet flow_hash and within flow reuse time limit.

	
Flow.packet_direction()

	Return the direction of the current packet in the flow
where c2s is client to server and s2c is server to client.

	
Flow.server()

	The IP that is the destination of the flow (if known,
otherwise 0)

Finds first packet seen for the hash within the time limit
and returns the destination IP

	
Flow.suppress_flow()

	Set the suppressed attribute in the flow database
object to the current packet count so that future
suppressions of the same flow can be backed off
to prevent overwhelming the controller

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

 	Code Documentation

identities module

The identities module is part of the nmeta suite

It provides an abstraction for participants (identities), using
a MongoDB database for storage and data retention maintenance.

Identities are identified via TBD....

There are methods (see class docstring) that provide harvesting
of identity metadata and various retrieval searches

	
class identities.Identities(config)

	Bases: baseclass.BaseClass

An object that represents identity metadata

Variables available for Classifiers (assumes class instantiated as
an object called ‘ident’):

	ident.TBD

	TBD

	ident.harvest(pkt, flow.packet)

	TBD

ident.findbymac(mac_address)

	Challenges (not handled - yet):

	
	TBD

	
class Identity

	Bases: object

An object that represents an individual Identity Indicator

	
dbdict()

	Return a dictionary object of identity metadata
parameters for storing in the database

	
Identities.findbymac(mac_addr)

	TEST FIND BY MAC ADDR
DOC TBD

	
Identities.findbynode(host_name, harvest_type='any', regex=False)

	Find by node name
Pass it the name of the node to search for. Additionally,
can set:

regex=True Treat service_name as a regular expression
harvest_type= Specify what type of harvest (i.e. DHCP)

Returns boolean

	
Identities.findbyservice(service_name, harvest_type='any', regex=False, ip_address='any')

	Find by service name
Pass it the name of the service to search for. Additionally,
can set:

regex=True Treat service_name as a regular expression
harvest_type= Specify what type of harvest (i.e. DNS_A)
ip_address= Look for specific IP address

Returns boolean

	
Identities.harvest(pkt, flow_pkt)

	Passed a raw packet and packet metadata from flow object.
Check a packet_in event and harvest any relevant identity
indicators to metadata

	
Identities.harvest_arp(pkt, flow_pkt)

	Harvest ARP identity metadata into database.
Passed packet-in metadata from flow object.
Check ARP reply and harvest identity
indicators to metadata

	
Identities.harvest_dhcp(flow_pkt)

	Harvest DHCP identity metadata into database.
Passed packet-in metadata from flow object.
Check LLDP TLV fields and harvest any relevant identity
indicators to metadata

	
Identities.harvest_dns(flow_pkt)

	Harvest DNS identity metadata into database.
Passed packet-in metadata from flow object.
Check DNS answer(s) and harvest any relevant identity
indicators to metadata

	
Identities.harvest_lldp(flow_pkt)

	Harvest LLDP identity metadata into database.
Passed packet-in metadata from flow object.
Check LLDP TLV fields and harvest any relevant identity
indicators to metadata

	
identities.mac_addr(address)

	Convert a MAC address to a readable/printable string

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta 0.2.0 documentation

 	Code Documentation

forwarding module

This module is part of the nmeta suite running on top of Ryu SDN
controller to provide network identity and flow metadata.
It provides methods for forwarding functions.

	
class forwarding.Forwarding(_config)

	Bases: object

This class is instantiated by nmeta.py and provides methods
for making forwarding decisions and transformations to packets.

	
basic_switch(event, in_port)

	Passed a packet in event and return an output port

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	nmeta 0.2.0 documentation

 	Code Documentation

switch_abstraction module

This module is part of the nmeta suite running on top of Ryu SDN controller.
It provides functions that abstract the details of OpenFlow calls, including
differences between OpenFlow versions where practical

	
class switch_abstraction.SwitchAbstract(config)

	Bases: baseclass.BaseClass

This class is instantiated by various other modules
and provides methods for interacting with switches
that are safe to use without need to for the calling
program to know calls specific to the version of
OpenFlow that the switch runs (where practical...)

	
add_flow(datapath, match, actions, **kwargs)

	Add a flow table entry to a switch.
Returns 1 for success or 0 for any type of error

	Required kwargs are:

	priority (0)
buffer_id (None)
idle_timeout (5)
hard_timeout (0)

	
add_flow_eth(datapath, msg, **kwargs)

	Add an ethernet (non-IP) flow table entry to a switch.
Returns 1 for success or 0 for any type of error
Uses Ethertype in match to prevent matching against IPv4
or IPv6 flows

	
add_flow_ip(datapath, msg, **kwargs)

	Add an IP (v4 or v6) flow table entry to a switch.
Returns 1 for success or 0 for any type of error
Uses IP protocol number to prevent matching on TCP flows

	
add_flow_tcp(datapath, msg, **kwargs)

	Add a TCP flow table entry to a switch.
Returns 1 for success or 0 for any type of error

	
get_actions(datapath, ofv, out_port, out_queue)

	Passed a datapath, an OpenFlow version an out port,
an out queue and flood port # and build and return an
appropriate set of actions for this

	
get_flow_match(datapath, ofproto, **kwargs)

	Passed a OF protocol version and a Flow Match keyword arguments dict
and return an OF match tailored for the OF version
otherwise 0 (false) if compatibility not possible.
TBD: validating values...

	
get_friendly_of_version(ofproto)

	Passed an OF Protocol object and return a
human-friendly version of the protocol
revision number

	
get_in_port(msg, datapath, ofproto)

	Passed a msg, datapath and OF protocol version
and return the port that the
packet came in on (version specific)

	
packet_out(datapath, msg, in_port, out_port, out_queue, nq=0)

	Sends a supplied packet out switch port(s) in specific queue.
Set nq=1 if want no queueing specified (i.e. for a flooded
packet)

	
request_switch_desc(datapath)

	Request that a switch send us it’s description
data

	
set_switch_config(datapath, config_flags, miss_send_len)

	Set config on a switch including config flags that
instruct fragment handling behaviour and miss_send_len
which controls the number of bytes sent to the controller
when the output port is specified as the controller

	
set_switch_table_miss(datapath, miss_send_len, hw_desc, sw_desc)

	Set a table miss rule on table 0 to send packets to
the controller. This is required for OF versions higher
than v1.0. Do not set on older OpenvSwitch as it causes packets
to be sent to controller with no buffer and OpenvSwitch
doesn’t need this rule as it punts to the controller
regardless (contrary to specification?)
Note: OVS 2.5.0 doesn’t do this, but not sure what point fix
was applied to OVS, somewhere between 2.0.2 and 2.5.0

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	nmeta 0.2.0 documentation

 Python Module Index

 a |
 c |
 f |
 i |
 n |
 s |
 t

 			

 		
 a	

 	
 	
 api	

 	
 	
 api_external	

 			

 		
 c	

 	
 	
 config	

 			

 		
 f	

 	
 	
 flows	

 	
 	
 forwarding	

 			

 		
 i	

 	
 	
 identities	

 			

 		
 n	

 	
 	
 nmeta	

 			

 		
 s	

 	
 	
 switch_abstraction	

 			

 		
 t	

 	
 	
 tc_custom	

 	
 	
 tc_identity	

 	
 	
 tc_policy	

 	
 	
 tc_static	

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	nmeta 0.2.0 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

_

 	

 	_add_flow() (nmeta.NMeta method)

 	_CONTEXTS (nmeta.NMeta attribute)

 	

 	_port_status_handler() (nmeta.NMeta method)

A

 	

 	add_flow() (switch_abstraction.SwitchAbstract method)

 	add_flow_eth() (switch_abstraction.SwitchAbstract method)

 	add_flow_ip() (switch_abstraction.SwitchAbstract method)

 	add_flow_tcp() (switch_abstraction.SwitchAbstract method)

 	

 	Api (class in api)

 	api (module)

 	api_external (module)

B

 	

 	basic_switch() (forwarding.Forwarding method)

C

 	

 	check_custom() (tc_custom.CustomInspect method)

 	check_dns() (tc_identity.IdentityInspect method)

 	check_identity() (tc_identity.IdentityInspect method)

 	check_lldp() (tc_identity.IdentityInspect method)

 	check_policy() (tc_policy.TrafficClassificationPolicy method)

 	check_static() (tc_static.StaticInspect method)

 	

 	client() (flows.Flow method)

 	commit() (flows.Flow.Classification method)

 	Config (class in config)

 	config (module)

 	CustomInspect (class in tc_custom)

D

 	

 	dbdict() (flows.Flow.Classification method)

 	

 	(flows.Flow.Packet method)

 	(identities.Identities.Identity method)

 	

 	desc_stats_reply_handler() (nmeta.NMeta method)

E

 	

 	error_msg_handler() (nmeta.NMeta method)

 	

 	ExternalAPI (class in api_external)

F

 	

 	findbymac() (identities.Identities method)

 	findbynode() (identities.Identities method)

 	findbyservice() (identities.Identities method)

 	Flow (class in flows)

 	Flow.Classification (class in flows)

 	

 	Flow.Packet (class in flows)

 	flow_removed_handler() (nmeta.NMeta method)

 	flows (module)

 	Forwarding (class in forwarding)

 	forwarding (module)

G

 	

 	get_actions() (switch_abstraction.SwitchAbstract method)

 	get_data_structure_size_rows() (api.RESTAPIController method)

 	get_event_rates() (api.RESTAPIController method)

 	get_flow_match() (switch_abstraction.SwitchAbstract method)

 	get_friendly_of_version() (switch_abstraction.SwitchAbstract method)

 	get_id_ip() (api.RESTAPIController method)

 	

 	get_id_mac() (api.RESTAPIController method)

 	get_id_service() (api.RESTAPIController method)

 	get_in_port() (switch_abstraction.SwitchAbstract method)

 	get_packet_time() (api.RESTAPIController method)

 	get_value() (config.Config method)

H

 	

 	harvest() (identities.Identities method)

 	harvest_arp() (identities.Identities method)

 	harvest_dhcp() (identities.Identities method)

 	

 	harvest_dns() (identities.Identities method)

 	harvest_lldp() (identities.Identities method)

I

 	

 	Identities (class in identities)

 	identities (module)

 	Identities.Identity (class in identities)

 	IdentityInspect (class in tc_identity)

 	ingest_dictionary() (api_external.ExternalAPI method)

 	ingest_packet() (flows.Flow method)

 	instantiate_classifiers() (tc_custom.CustomInspect method)

 	IP_PATTERN (api.Api attribute)

 	

 	ipv4_text_to_int() (in module nmeta)

 	is_match_ethertype() (tc_static.StaticInspect method)

 	is_match_ip_space() (tc_static.StaticInspect method)

 	is_match_macaddress() (tc_static.StaticInspect method)

 	is_valid_ethertype() (tc_static.StaticInspect method)

 	is_valid_ip_space() (tc_static.StaticInspect method)

 	is_valid_macaddress() (tc_static.StaticInspect method)

 	is_valid_transport_port() (tc_static.StaticInspect method)

L

 	

 	list_flow_table() (api.RESTAPIController method)

 	list_flow_table_augmented() (api.RESTAPIController method)

 	list_flow_table_by_IP() (api.RESTAPIController method)

 	

 	list_identity_nic_table() (api.RESTAPIController method)

 	list_identity_system_table() (api.RESTAPIController method)

M

 	

 	m_pi_rate_response() (api_external.ExternalAPI method)

 	mac_addr() (in module identities)

 	max_interpacket_interval() (flows.Flow method)

 	

 	max_packet_size() (flows.Flow method)

 	message (api.NotFoundError attribute)

 	min_interpacket_interval() (flows.Flow method)

N

 	

 	NMeta (class in nmeta)

 	nmeta (module)

 	

 	NotFoundError

O

 	

 	OFP_VERSIONS (nmeta.NMeta attribute)

 	

 	on_inserted_callback() (api_external.ExternalAPI method)

P

 	

 	packet_count() (flows.Flow method)

 	packet_direction() (flows.Flow method)

 	packet_in() (nmeta.NMeta method)

 	

 	packet_out() (switch_abstraction.SwitchAbstract method)

 	post_get_callback() (api_external.ExternalAPI method)

 	pre_get_callback() (api_external.ExternalAPI method)

Q

 	

 	qos() (tc_policy.TrafficClassificationPolicy method)

R

 	

 	request_switch_desc() (switch_abstraction.SwitchAbstract method)

 	rest_command() (in module api)

 	

 	RESTAPIController (class in api)

 	run() (api_external.ExternalAPI method)

S

 	

 	server() (flows.Flow method)

 	set_switch_config() (switch_abstraction.SwitchAbstract method)

 	set_switch_table_miss() (switch_abstraction.SwitchAbstract method)

 	StaticInspect (class in tc_static)

 	

 	suppress_flow() (flows.Flow method)

 	switch_abstraction (module)

 	switch_connection_handler() (nmeta.NMeta method)

 	SwitchAbstract (class in switch_abstraction)

T

 	

 	tc_custom (module)

 	tc_identity (module)

 	tc_policy (module)

 	tc_static (module)

 	tcp_ack() (flows.Flow.Packet method)

 	tcp_cwr() (flows.Flow.Packet method)

 	tcp_ece() (flows.Flow.Packet method)

 	tcp_fin() (flows.Flow.Packet method)

 	tcp_psh() (flows.Flow.Packet method)

 	

 	tcp_rst() (flows.Flow.Packet method)

 	tcp_syn() (flows.Flow.Packet method)

 	tcp_urg() (flows.Flow.Packet method)

 	to_dict() (tc_policy.TrafficClassificationPolicy.Condition method)

 	

 	(tc_policy.TrafficClassificationPolicy.Conditions method)

 	(tc_policy.TrafficClassificationPolicy.Rule method)

 	TrafficClassificationPolicy (class in tc_policy)

 	TrafficClassificationPolicy.Condition (class in tc_policy)

 	TrafficClassificationPolicy.Conditions (class in tc_policy)

 	TrafficClassificationPolicy.Rule (class in tc_policy)

U

 	

 	url_data_size_rows (api.Api attribute)

 	url_flowtable (api.Api attribute)

 	url_flowtable_augmented (api.Api attribute)

 	url_flowtable_by_ip (api.Api attribute)

 	url_identity_ip (api.Api attribute)

 	url_identity_mac (api.Api attribute)

 	

 	url_identity_nic_table (api.Api attribute)

 	url_identity_service (api.Api attribute)

 	url_identity_system_table (api.Api attribute)

 	url_measure_event_rates (api.Api attribute)

 	url_measure_pkt_time (api.Api attribute)

V

 	

 	validate_policy() (tc_policy.TrafficClassificationPolicy method)

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 _images/api_hierarchy.png
‘nmeta’
e
<service_name> [
-
3555
LIS
<
s
s
s WA,
R S
I
<ip_addr>
— P
e
S
<mac_addr>

s
W
SREEB

<flowactions_value>
R, =

RS Tt

R RS
<service_name> [ESEEE
M. T co_name?
e W N
R
PSS SEEEEEESEEBEEE

e <node_name>

s
e
<ip_addr>
AL
SRS

SERRSTSI RS
<mac_addr> fssssss

e e e
I
s

sseRseaseasarasare
Planned

s
R

<dynamic_key>

<dynamic_key>: <value>

ejeperay a0AL UORESIBAUOD

ejepeIen uedonEd

SOuB| 80UBWLIOLS]

_images/data_struct_identities.png
¢$mac_address

¢ip_address
fharvest_type
fharvest_time
fhost_name
$host_type
fhost_os
fhost_desc
¢service_name
¢service_alias
duser_i

{valid_from

evalid_to

_images/quickstart_number_1.png
. Opentiow OpenFiow

_images/flows_abstraction.png
Packet-In Flow

Identification

flow_hash

Flow Behaviour

packet_count()
client()

server()
packet_direction()
max_packet_size()

Flow Classification

‘classification’

classified
classification_type
classification_tag
classification_time
actions

commit()

Ingest a Packet-In Event
ingest_packet(dpid,
'—— in_port, pkt, timestamp)

Packet-In Packet

‘packet’
Identifcation " Environmental
<flow_hash dpid
packet_hash in_port
o timestamp
oth_src length
eth_dst
eth_type
Layer:3
ip_src
ip_dst
proto
TCP-specific Flags
Layer4 tep_fin
fp_sre tep_syn
to_dst AT
tp_flags tcp_psh
tp_seq_src tep_ack
tp_seq_dst Y]
Layer-7 tcp_ece
payload tep_cwr

_images/quickstart_number_5.png

_images/nmeta_concept.png
Conversations

Participants
User dentty
. bob@example. com
System identity Flow Enrichment
l.e. Application=Intranet,
Shurtyenormal

Qos.reatmentesiver

o

!

. deskiop10.example.com
|
|

System Services
e, web server

System Features

e SysDescr: Ubuniu precise, i

PortDescr: ethi |

.) !

I

/ I

What enterprise networks
generally know today.

!

h
Metadata that can be.
added by nmeta

_images/simple_tc_policy.png
a— Traffic classification rules root

tc_rules:
Traffic Classification Rulesets and Rules
<— Ruleset Name
comment: OpenFlow Protocol Traffic Rule significd by preceding list dash

Must contain a match_type

Conditions List Stanza (must contain at least one condition
and each condition must contain a match type and at least one.
classifier)

Actions Stanza

_images/nmeta.png
11010010101011001001001011| P — QoS Low Priority 0010010010111010100101
0101001011101001010101 pwn Identity, Suspiciou: 00101010110010010010111

search.html

 Navigation

 		
 index

 		
 modules |

 		nmeta 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_images/quickstart_number_2.png

_images/data_struct_packet_ins.png

_images/identities_abstraction.png
Check for / harvest Identity Indicator Internal Identity Structure
— harvest(raw_pkt, flow_pkt) ideniiy
Internal Harvest Methods. dpid
harvest_arp(raw_pkt, flow_pkt) in_port
harvest_dhcp(raw_pkt, flow_pkt) mac_address
harvest_lidp(raw_pkt, flow_pkt) ip_address
harvest_dns(raw_pkt, flow_pkt) harvest_type
harvest_time
Identity Lookups host_name
findbymac(mac) host_type
findbynode(host_name + opts) ot¥os
findbyservice(service_name + opts) host_desc
service_name

service_alias
user_id
valid_from
valid_to

_images/flow_metadata_screenshot3.png
"221m: g
"flow_actions™: {
"actions™: {

"set_desc_tag": "description=\"YouTube Streaming Traffic\

'
“iontinue to_inspectr: false, Flow Metadata Enhancement
ndatapach®:

11270s53843885";
#in_porc
“out_port
out queuer: 0
) QoS Treatment
'
"matcn®: crue

'

wiams o
192.168.1.101": ¢

¢
)
» y
1 Identity-Augmented Metadata
203.97.26.42%: ¢
servicer:
s gourube con: ¢
ST env: 1431335250.670762,
“sourcer: "ans”,
i 162
'
"youtube_ui 1 google con: ¢
e e 110252,
"sourcer: "dns_cname”,
i 263
8
)
)
'

mip A": "192.168.1.101",
"ip_B": "203.97.26.427,
ip_proto”: 6,
"number_of_packets_to_controller
mtop A" 53039,

meep BT 443,

moime Firstv: 1431335250.763437,
meime last": 1431335251.852368

31,

_images/quickstart_number_3.png

_images/quickstart_number_4.png

_images/nmeta_code_structure_simple.png

_images/nmeta_logical_core.png
S (@)

Suppress Output
Sat fowntriesin ‘Send packet i
switches fo suppress flow appropriae)
packet-n ovents i
‘appropriats)

v

Packet-In ‘Add Flow Entries Packet-Out

_images/data_struct_classifications.png
‘The classifications database collection s holds a record of traffic classifications made by nmeta,
along with actions to take. Points to consider:

~The classiffed flag says whether or not more packels need to be seen to make a determination

‘classifications’
_id
flow_hash
classified()
classification_type
classification_tag
classification_time
actions()

_images/complex_tc_policy.png
Traffic classification rules root

tc_rules:
Traffic Classification Rulesets and Rules
te_ruleset_1:<— Ruleset Name
#

A static rule:
comment: OpenFlow Protocol Traffic

Rule signified by preceding list dash
Must contain a match_type

Conditions List Stanza (must contain at least one condition
and cach condition must contain a match type and at least one
Classifier)

ns:
set_desc: "OpenFlow Protocol Traffic"
qos_treatment: high_priority

Actions Stanza

#
#An identity rule: Rule signified by preceding list dash
comment: Audit Division SSHTBfic iyt contain a match type

Conditions List Stanza (must contain at least one condition
and cach condition must contain a match type and at least onc
classifier)

Second condition in list

set_desc: "High Priority Audit SSH Traffic”
qos_treatment: high_priority

Actions Stanza

#
A custom rule: Rule signified by preceding list dash

comment: Constrained Bandwidth Traffic (Statistical) Must contain a match_type

Conditions List Stanza, calling a custom classifier called
‘statistical_qos_bandwidth_1". This must exist as a .py file in
the classifiers directory

Actions Stanza. Custom classifier

actions:
set_desc: classifier_return
qos_treatment: classifier_return

returns more than a Boolean

