

 [image: _images/nmeta.png]

nmeta

The nmeta project is a research platform for traffic classification on
Software Defined Networking (SDN). Read More

Contents:

	Introduction
	How it Works

	Limitations

	Feature Enhancement Wishlist

	Privacy Considerations

	Disclaimer

	How to Contribute

	Recipes
	Parental Control Recipe
	Main Policy

	LAN Traffic Clean-up
	Main Policy

	Quality of Service (QoS) Recipe
	Main Policy

	ML Training Data Collector
	Main Policy

	Install
	Pre-Work
	Ensure packages are up-to-date

	Install Debian Packages

	Install Python Packages

	Install MongoDB

	Install nmeta
	Test nmeta

	Run nmeta

	Test WebUI

	Configure Switches
	Configure OpenFlow

	Configure QoS Queues

	Aliases

	Configure
	Main Policy
	Create Your Own Policy

	TC Branch - Rules

	TC Branch - Static Classifiers

	TC Branch - Identity Classifiers

	TC Branch - Custom Classifiers

	TC Branch - Actions

	QoS Treatment Branch

	Port Sets Branch

	Locations Branch

	System Config

	Build a Lab
	Physical Labs
	OpenWRT with Open vSwitch

	Virtual Labs
	Mininet with Vagrant

	VirtualBox with Vagrant

	Web UI

	APIs
	Flow APIs
	Flow Mods API

	Flows API

	Flows UI API

	Flows Removed API

	Classifications

	Identity APIs
	Identities API

	Identities UI API

	Infrastructure APIs
	Controller Summary API

	PI Rate API

	PI Time API

	Switches API

	Internal APIs

	Extend Nmeta
	Custom Classifiers

	Develop
	Code Structure

	Data Structures
	Information Abstractions

	Database Collections

	Logging

	Code Documentation
	nmeta module

	policy module

	tc_static module

	tc_identity module

	tc_custom module

	api_external module

	config module

	flows module

	identities module

	forwarding module

	switches module

	nethash module

Indices and tables

	Index

	Module Index

	Search Page

Introduction

The nmeta (pronounced en-meta) project is founded on the belief that
innovation in networks requires a foundation layer of knowledge
about both the participants and their types of conversation.

Today, networks generally have only a limited view of participants
and conversation types

[image: ../_images/nmeta_concept.png]
The goal of the nmeta project is to produce network metadata enriched with
participant identities and conversation types to provide a foundation for
innovation in networking.

The production of enriched network metadata requires policy-based control,
and ability to adapt to new purposes through extensibility.

Enriched network metadata has a number of uses, including classifying flows
for QoS, billing, traffic engineering, troubleshooting and security.

Nmeta is a research platform for traffic classification on Software Defined
Networking (SDN). It runs on top of the Ryu SDN controller
(see: http://osrg.github.io/ryu/).

How it Works

Nmeta uses OpenFlow Software-Defined Networking (SDN) to selectively control
flows through switches so that packets can be classified and actions taken.
It instructs connected OpenFlow switches to send packets from unknown flows
to the Ryu SDN Controller, on which nmeta runs, for analysis.

[image: ../_images/nmeta_logical_core.png]
Nmeta configures a single flow table per switch with a table-miss
flow entry (FE) that sends full unmatched packets to the controller. As flows
are classified, specific higher-priority FEs are configured to suppress
sending further packets to the controller.

Limitations

Nmeta does not scale well. Every new flow has a processing overhead, and this
workload cannot be scaled horizontally on the controller. The nmeta2 system is
being developed to address this limitation.

Nmeta has no security, it was written to demonstrate SDN functionality
and has omitted addressing security requirements. A future rewrite may address
security, but for now there is no security whatsoever.

Feature Enhancement Wishlist

See Issues [https://github.com/mattjhayes/nmeta/issues] for list of
enhancements and bugs

Privacy Considerations

Collecting network metadata brings with it ethical and legal considerations
around privacy. Please ensure that you have permission to monitor traffic
before deploying this software.

Disclaimer

This code carries no warrantee whatsoever. Use at your own risk.

How to Contribute

Code contributions and suggestions are welcome. Enhancement or bug fixes
can be raised as issues through GitHub.

Please get in touch if you want to be added as a contributor to the project:

Email: Nmeta Maintainer

Recipes

These recipes are to provide ideas on how nmeta can be used through examples.

Note that policies have an implicit allow at the end of the policy. Also,
actions implicitly allow if there is no drop action.

Recipes:

	Parental Control Recipe

	LAN Traffic Clean-up

	Quality of Service (QoS) Recipe

	ML Training Data Collector

Parental Control Recipe

This recipe is for using nmeta to provide parental control on a home network.
It is just an example of some capabilities, the exact configuration needs to
be tailored to your specific requirements. Note that parental controls on
network should be part of a wider strategy, including controls on the devices
used by children, and education on internet safety.

In this fictional example, there are two children, conveniently named Alice
and Bob. Alice has a Chromebook, which does not register a hostname via DHCP,
but does have a consistent Wi-Fi MAC address (01:23:45:67:89:ab). Bob has
an iPhone with a DHCP host name of Bobs-iPhone.

In this recipe we enforce the following parental controls on Alice and Bob:

	All devices on the home network can only do DNS lookups against OpenDNS
FamilyShield servers (that attempt to block adult content), apart from
Chromecast which doesn’t honour the DNS allocations in DHCP and insists on
talking to Google’s DNS servers

	Alice’s Chromebook is blocked from accessing YouTube

	Alice’s Chromebook and Bob’s iPhone are only allowed to access the Internet
between 7am and 9pm

Main Policy

Use this main_policy.yaml file in the user config directory:

~/nmeta/nmeta/config/user/

Here’s the YAML:

#*** Main Policy for nmeta - Home Router Parental Control Policy
#*** Written in YAML
#
tc_rules:
 # Traffic Classification Rulesets and Rules
 tc_ruleset_1:
 - comment: Allow OpenDNS
 match_type: any
 conditions_list:
 - match_type: all
 classifiers_list:
 - udp_dst: 53
 - ip_dst: 208.67.222.123
 - match_type: all
 classifiers_list:
 - udp_src: 53
 - ip_src: 208.67.222.123
 - match_type: all
 classifiers_list:
 - udp_dst: 53
 - ip_dst: 208.67.220.123
 - match_type: all
 classifiers_list:
 - udp_src: 53
 - ip_src: 208.67.220.123
 actions:
 set_desc: "OpenDNS Name Resolution"
 - comment: Allow Chromecast DNS to Google
 match_type: any
 conditions_list:
 - match_type: all
 classifiers_list:
 - identity_dhcp_hostname: Chromecast
 - udp_dst: 53
 - ip_dst: 8.8.8.8
 - match_type: all
 classifiers_list:
 - identity_dhcp_hostname: Chromecast
 - udp_src: 53
 - ip_src: 8.8.8.8
 actions:
 set_desc: "Allow Chromecast DNS to Google"
 - comment: Block all other DNS
 match_type: any
 conditions_list:
 - match_type: any
 classifiers_list:
 - udp_src: 53
 - match_type: any
 classifiers_list:
 - udp_dst: 53
 - match_type: any
 classifiers_list:
 - tcp_src: 53
 - match_type: any
 classifiers_list:
 - tcp_dst: 53
 actions:
 set_desc: "Bad DNS, needs investigating"
 drop: at_controller
 - comment: Drop Alice Chromebook to YouTube
 match_type: any
 conditions_list:
 - match_type: all
 classifiers_list:
 - eth_src: 01:23:45:67:89:ab
 - identity_service_dns_re: '.*\.youtube*'
 - match_type: all
 classifiers_list:
 - eth_src: 01:23:45:67:89:ab
 - identity_service_dns_re: '.*\.googlevideo\.com'
 actions:
 set_desc: "Drop Alice Chromebook to YouTube"
 drop: at_controller
 - comment: Time of Day restriction on Alice and Bob
 match_type: all
 conditions_list:
 - match_type: any
 classifiers_list:
 - eth_src: 01:23:45:67:89:ab
 - identity_dhcp_hostname: Bobs-iPhone
 - match_type: all
 classifiers_list:
 - time_of_day: 21:00-06:59
 actions:
 set_desc: "Drop Kids Internet after hours"
 drop: at_controller
#
qos_treatment:
 # Control Quality of Service (QoS) treatment mapping of
 # names to output queue numbers:
 default_priority: 0
 constrained_bw: 1
 high_priority: 2
 low_priority: 3
#
port_sets:
 # Port Sets control what data plane ports policies and
 # features are applied on. Names must be unique.
 port_set_list:
 - name: port_set_location_internal
 port_list:
 - name: TPLink-internal
 DPID: 1
 ports: 1-2,4
 vlan_id: 0

 - name: port_set_location_external
 port_list:
 - name: TPLink-external
 DPID: 1
 ports: 3
 vlan_id: 0
#
locations:
 # Locations are logical groupings of ports. Takes first match.
 locations_list:
 - name: internal
 port_set_list:
 - port_set: port_set_location_internal

 - name: external
 port_set_list:
 - port_set: port_set_location_external

 default_match: unknown

LAN Traffic Clean-up

This recipe blocks undesirable LAN traffic. What counts as undesirable is
up for debate, this recipe just demonstrates some mechanisms for writing
a policy

It does the following:

	Drops SSDP (UPnP) traffic

	Drops Bonjour traffic

	Implicit allow of all other traffic, as well of harvesting of
conversation and identity metadata

Main Policy

Use this main_policy.yaml file in the user config directory:

~/nmeta/nmeta/config/user/

Here’s the YAML:

#*** Main Policy for nmeta - Home Router LAN Clean-up Policy
#*** Written in YAML
#
tc_rules:
 # Traffic Classification Rulesets and Rules
 tc_ruleset_1:
 - comment: Drop Bonjour Sleep Proxy
 match_type: any
 conditions_list:
 - match_type: all
 classifiers_list:
 - udp_src: 5353
 - udp_dst: 5353
 actions:
 set_desc: "Drop Bonjour Sleep Proxy"
 drop: at_controller_and_switch
 - comment: Drop SSDP UPnP
 match_type: any
 conditions_list:
 - match_type: all
 classifiers_list:
 - ip_dst: 239.255.255.250
 - udp_dst: 1900
 actions:
 set_desc: "Drop SSDP UPnP"
 drop: at_controller_and_switch

#
qos_treatment:
 # Control Quality of Service (QoS) treatment mapping of
 # names to output queue numbers:
 default_priority: 0
 constrained_bw: 1
 high_priority: 2
 low_priority: 3
#
port_sets:
 # Port Sets control what data plane ports policies and
 # features are applied on. Names must be unique.
 port_set_list:
 - name: port_set_location_internal
 port_list:
 - name: TPLink-internal
 DPID: 1
 ports: 1-2,4
 vlan_id: 0

 - name: port_set_location_external
 port_list:
 - name: TPLink-external
 DPID: 1
 ports: 3
 vlan_id: 0
#
locations:
 # Locations are logical groupings of ports. Takes first match.
 locations_list:
 - name: internal
 port_set_list:
 - port_set: port_set_location_internal

 - name: external
 port_set_list:
 - port_set: port_set_location_external

 default_match: unknown

Quality of Service (QoS) Recipe

This recipe uses QoS to constrain bandwidth of YouTube video traffic, purely
as an example of how to do QoS.

Traffic is identified with a classification list, then marked with a
QoS treatment action (constrained_bw).

The qos_treatment section maps constrained_bw to QoS queue number 1.

QoS queues need to be separately configured on switches. Failure to have a
queue defined on the switch (other than 0) may result in traffic being dropped.

Main Policy

Use this main_policy.yaml file in the user config directory:

~/nmeta/nmeta/config/user/

Here’s the YAML:

#*** Main Policy for nmeta - Example QoS Recipe.
#*** Written in YAML
#
Example QoS constraint of YouTube Video traffic
#
tc_rules:
 # Traffic Classification Rulesets and Rules
 tc_ruleset_1:
 - comment: Constrained Bandwidth Traffic
 match_type: any
 conditions_list:
 - match_type: any
 classifiers_list:
 - identity_service_dns_re: '.*\.youtube*'
 - identity_service_dns_re: '.*\.googlevideo\.com'
 actions:
 set_desc: "Constrained YouTube Bandwidth Traffic"
 qos_treatment: constrained_bw
#
qos_treatment:
 # Control Quality of Service (QoS) treatment mapping of
 # names to output queue numbers:
 default_priority: 0
 constrained_bw: 1
 high_priority: 2
 low_priority: 3
#
port_sets:
 # Port Sets control what data plane ports policies and
 # features are applied on. Names must be unique.
 port_set_list:
 - name: port_set_location_internal
 port_list:
 - name: VirtualSwitch1-internal
 DPID: 1
 ports: 1-3,5,66
 vlan_id: 0

 - name: VirtualSwitch2-internal
 DPID: 255
 ports: 3,5
 vlan_id: 0

 - name: port_set_location_external
 port_list:
 - name: VirtualSwitch1-external
 DPID: 1
 ports: 6
 vlan_id: 0

 - name: VirtualSwitch2-external
 DPID: 255
 ports: 1-2,4
 vlan_id: 0
#
locations:
 # Locations are logical groupings of ports. Takes first match.
 locations_list:
 - name: internal
 port_set_list:
 - port_set: port_set_location_internal

 - name: external
 port_set_list:
 - port_set: port_set_location_external

 default_match: external

ML Training Data Collector

This recipe can be used to build traffic classification training data
for supervised machine learning (ML). It uses a custom classifier to
write flow characteristics into the classification tag. This data can
then be retrieved via the classifications API and annotated against the
ground truth of what type of flow it was.

Main Policy

Use this main_policy.yaml file in the user config directory:

~/nmeta/nmeta/config/user/

Here’s the YAML:

#*** Main Policy for nmeta - Machine Learning (ML) Data Collector
#*** Written in YAML
#
tc_rules:
 # Traffic Classification Rulesets and Rules
 tc_ruleset_1:
 - comment: Machine Learning Data Collector
 match_type: any
 conditions_list:
 - match_type: any
 classifiers_list:
 - custom: ml_training_data_collector_1
 actions:
 set_desc: classifier_return
 qos_treatment: classifier_return
#
qos_treatment:
 # Control Quality of Service (QoS) treatment mapping of
 # names to output queue numbers:
 default_priority: 0
 constrained_bw: 1
 high_priority: 2
 low_priority: 3
#
port_sets:
 # Port Sets control what data plane ports policies and
 # features are applied on. Names must be unique.
 port_set_list:
 - name: port_set_location_internal
 port_list:
 - name: VirtualSwitch1-internal
 DPID: 1
 ports: 1-3,5,66
 vlan_id: 0

 - name: VirtualSwitch2-internal
 DPID: 255
 ports: 3,5
 vlan_id: 0

 - name: port_set_location_external
 port_list:
 - name: VirtualSwitch1-external
 DPID: 1
 ports: 6
 vlan_id: 0

 - name: VirtualSwitch2-external
 DPID: 255
 ports: 1-2,4
 vlan_id: 0
#
locations:
 # Locations are logical groupings of ports. Takes first match.
 locations_list:
 - name: internal
 port_set_list:
 - port_set: port_set_location_internal

 - name: external
 port_set_list:
 - port_set: port_set_location_external

 default_match: external

Classification data can be retrieved with cURL with this command:

curl -g http://localhost:8081/v1/classifications?where={%22classified%22:true} | python -m json.tool

Example result:

{
 "_items": [
 {
 "_created": "00:00:00.000000",
 "_etag": "bd0da01a8db1ece3e2f23ecd577bb0474568e268",
 "_id": "59f43d3301186133ec5a8d0f",
 "_updated": "00:00:00.000000",
 "actions": {
 "qos_treatment": "default_priority",
 "set_desc": "classifier_return"
 },
 "classification_tag": "ML,10.1.0.2,10.1.0.1,6,80,35044,162,2.152,0.111,5,[1, 0, 1, 1, 0],[74, 74, 66, 84, 66]",
 "classification_time": "21:17:55.823000",
 "classified": true,
 "flow_hash": "8ac72c304d7c7a61349ba99e0c21541e"
 }
],
 "_meta": {
 "max_results": 25,
 "page": 1,
 "total": 1
 }
}

Note the classification_tag that contains the flow characteristics. See the
custom classifier code for field descriptions.

Install

This guide is for installing on Ubuntu 16.04.2 LTS

Pre-Work

Ensure packages are up-to-date

sudo apt-get update
sudo apt-get upgrade

Install Debian Packages

The following command installs these packages:

	pip (Python package manager)

	git (version control system)

	git flow (branching model for Git)

	python-pytest (used to run unit tests)

	python-yaml (YAML parser for Python)

sudo apt-get install python-pip git git-flow python-pytest python-yaml

Install Python Packages

Ensure pip (Python package manager) is latest version:

pip install --upgrade pip

Nmeta requires Python version 2.7.x, does not run on Python 3.x (yet)

The following command installs these Python packages:

	Ryu (OpenFlow Software-Defined Networking (SDN) controller application that handles communications with the switch)

	dpkt (library is used to parse and build packets)

	mock (Testing library)

	Requests (HTTP library)

	simplejson (JSON encoder and decoder)

	eve (REST API framework)

	coloredlogs (Add colour to log entries in terminal output)

	voluptuous (data validation library)

pip2.7 install ryu dpkt mock requests simplejson eve coloredlogs voluptuous --user

Install MongoDB

MongoDB is the database used by nmeta. Install MongoDB as per their instructions [https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/] (Note: Ubuntu 16.04 specific)

Import the MongoDB public GPG Key:

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 0C49F3730359A14518585931BC711F9BA15703C6

Create a list file for MongoDB:

echo "deb [arch=amd64,arm64] http://repo.mongodb.org/apt/ubuntu xenial/mongodb-org/3.4 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.4.list

Reload local package database:

sudo apt-get update

Install MongoDB:

sudo apt-get install -y mongodb-org

Set MongoDB to autostart:

systemctl enable mongod.service

Start MongoDB (if required) with:

sudo service mongod start

Install nmeta

Clone nmeta

cd
git clone https://github.com/mattjhayes/nmeta.git

Test nmeta

Tests should all pass:

cd ~/nmeta/tests/; py.test

Run nmeta

Run nmeta in a terminal window:

ryu-manager ~/nmeta/nmeta/nmeta.py

Run the external API (necessary for WebUI) in a separate terminal window:

~/nmeta/nmeta/api_external.py

Test WebUI

In a browser on the same machine that nmeta is installed on, navigate to:

http://localhost:8081/webUI/index.html

Configure Switches

Next, we need OpenFlow switches configured to Ryu/nmeta as their controller and
app.

Configure OpenFlow

Switches will need to be configured to use Ryu/nmeta as their controller.
The configuration details will differ depending on the type of switch.

Here is an example configuration for Open vSwitch to use a controller at
IP address 172.16.0.3 on TCP port 6633:

sudo ovs-vsctl set-controller br0 tcp:172.16.0.3:6633

You will need to work out setting that are appropriate for your topology
and switches.

Configure QoS Queues

To run Quality of Service (QoS), switches will need to be configured with QoS
queues.

See the documentation for your switch(es) for how to configure QoS queues.

Be aware that using a queue number that is not configured on the switch may
result in the switch dropping the packet.

Aliases

Aliases can be used to make it easier to run common commands.
To add the aliases, edit the .bash_aliases file in your home directory:

cd
sudo vi .bash_aliases

Paste in the following:

Test nmeta:
alias nmt='cd ~/nmeta/tests/; py.test'
#
Run nmeta:
alias nm="ryu-manager ~/nmeta/nmeta/nmeta.py"
#
Run nmeta external API:
alias nma='~/nmeta/nmeta/api_external.py'
#
Retrieve Packet-In rate via external API:
alias nma_pi_rate='curl http://localhost:8081/v1/infrastructure/controllers/pi_rate/ | python -m json.tool'

Configure

The nmeta policy configures how nmeta works with data plane traffic.
This includes traffic classification rules, what classifiers are used,
in what order and what actions are taken.

The policy is designed as a tree with many first level branches and only
a shallow depth.

Main Policy

Nmeta ships with a default policy in the YAML file:

~/nmeta/nmeta/config/main_policy.yaml

Do not edit the default policy as it will be overwritten by nmeta
updates.

Create Your Own Policy

Create your own policy by copying the default file to this location:

~/nmeta/nmeta/config/user/main_policy.yaml

(note the user directory)

If a main_policy.yaml file is present in the user directory it will completely
override the default policy. Note that a user-defined main policy file will
not be part of the git distribution, as it is excluded in the .gitignore file.

TC Branch - Rules

The traffic classification policy is based off a root key tc_rules.
This root contains a ruleset name (only one ruleset supported at this
stage), which in turn contains one or more rules. Rules contain conditions
and these in turn contain classifiers, as per the following diagram:

[image: ../_images/policy_hierarchy.png]
Rules are an ordered list (denoted by preceding dash). Each rule contains:

	Comment

	A comment to describe the purpose of the rule (optional). A
comment must start with the attribute comment: and any single-line string
can follow

	Match Type

	A match_type is one of:

	any

	Match if any of the conditions in the rule match

	all

	Match only if all of the conditions in the rule match

	none

	Match only if none of the conditions in the rule match

	Conditions List

	A list that contains one or more
condition stanzas that each contain a match type and a
classifiers_list containing one or more classifiers.

	Actions

	A single actions stanza that contains one or more actions

Example simple traffic classification policy with a single rule:

[image: ../_images/simple_tc_policy.png]
A condition contains:

	
	A match type, which is one of:

	
	any

	Match if any of the classifiers in the condition match

	all

	Match only if all of the classifiers in the condition match

	none

	Match only if none of the classifiers in the condition match.

	A classifiers_list containing one or more classifiers (see further below)

An actions stanza contains one or more attribute/value pairs

Here is a more complex traffic classification policy:

[image: ../_images/complex_tc_policy.png]
Conditions invoke classifiers. There are three types of classifier supported:

	Static

	Identity

	Custom (Payload / Statistical / Multi-classifier)

TC Branch - Static Classifiers

Static classifiers match on attributes in packet headers, or on environmental
attributes such as port numbers.

Supported attributes are:

location_src

Logical location (as defined by policy) of switch/port

Example:

location_src: external

time_of_day

Time of day range (matches if flow start time is in this time range)

Example:

time_of_day: 21:00-07:00

Note that range can extend through midnight and times are in 24 hour format

eth_src

Ethernet source MAC address.

Example:

eth_src: 08:00:27:4a:2d:41

eth_dst

Ethernet destination MAC address.

Example:

eth_dst: 08:00:27:4a:2d:42

eth_type

Ethernet type. Can be in hex (starting with 0x) or decimal.

Examples:

eth_type: 0x0800

eth_type: 35020

ip_src

IP source address. Can be a single address, a network with a mask in
CIDR notation, or an IP range with two addresses separated by a hyphen.
Both addresses in a range must be the same type, and the second
address must be higher than the first.

Examples:

ip_src: 192.168.56.12

ip_src: 192.168.56.0/24

ip_src: 192.168.56.12-192.168.56.31

ip_dst

IP destination address. Can be a single address, a network with a
mask in CIDR notation, or an IP range with two addresses separated by a
hyphen. Both addresses in a range must be the same type, and the second
address must be higher than the first.

Examples:

ip_dst: 192.168.57.40

ip_dst: 192.168.57.0/24

ip_dst: 192.168.57.36-192.168.78.31

tcp_src

TCP source port.

Example:

tcp_src: 22

tcp_dst

TCP destination port.

Example:

tcp_dst: 80

udp_src

UDP source port.

Example:

udp_src: 123

udp_dst

UDP destination port.

Example:

udp_dst: 53

TC Branch - Identity Classifiers

All identity classifiers are prefixed with:

identity_

LLDP systemname may be matched as a regular expression.
The match pattern must be contained in single
quotes. For example, to match system names of *.audit.example.com, add this
policy condition:

identity_lldp_systemname_re: '.*\.audit\.example\.com'

Supported attributes are:

identity_lldp_systemname

Exact match against a system name discovered
via LLDP. Example:

identity_lldp_systemname: bob.example.com

identity_lldp_systemname_re

Regular expression match against a system name
discovered via LLDP. Example:

identity_lldp_systemname_re: '.*\.audit\.example\.com'

identity_dhcp_hostname

Exact match against a host name discovered
via DHCP (option 12). Example:

identity_dhcp_hostname: bob

identity_dhcp_hostname_re

Regular expression match against a host name
discovered via DHCP (option 12). Example:

identity_dhcp_hostname_re: 'bob.*'

identity_service_dns

Exact match of either IP address in a flow against a
DNS domain. Example:

identity_service_dns: www.example.com

identity_service_dns_re

Regular expression match of either IP address in
a flow against a DNS domain. Example:

identity_service_dns_re: '.*\.example\.com'

TC Branch - Custom Classifiers

Nmeta supports the creation of custom classifiers.

All custom classifiers have the attribute:

custom

The value determines the custom .py file to load from the nmeta/classifiers
directory

For example, the following condition loads a custom classifier file ~/nmeta/nmeta/classifiers/statistical_qos_bandwidth_1.py:

custom: statistical_qos_bandwidth_1

TC Branch - Actions

Actions are specific to a rule, and define what nmeta should do when the rule is matched.
Multiple actions can be defined on a rule.

Supported attributes are:

drop

Drop the packet

No flow modification or packet-out will occur. The packet will however
appear in metadata and does add load to the controller.

Values can be:

	at_controller

	at_controller_and_switch

Example:

drop: at_controller_and_switch

A drop action with ‘at_controller_and_switch’ value will install a flow entry
with no actions (which implicitly drops) onto the switch that sent the
matching packet to the controller. Be aware that nmeta will generate a
fine-grained match for this drop rule that may not align with what is
specified in the policy. It builds the rule based on the classified packet
and will do a match on IPs & TCP or UDP destination port for TCP or UDP or
IPs for other IP traffic. It will not apply a rule for non-IP traffic.

qos_treatment

Specify QoS treatment for flow.

Values can be:

	default_priority

	constrained_bw

	high_priority

	low_priority

	classifier_return

Example:

qos_treatment: classifier_return

set_desc

Set description for the flow. This is a convenience for humans.

Example:

set_desc: "This is a flow type description"

QoS Treatment Branch

Quality of Service (QoS) treatment parameters are configured in main policy
under the qos_treatment root directive. They map qos action values to
queue numbers. Example:

qos_treatment:
 # Control Quality of Service (QoS) treatment mapping of
 # names to output queue numbers:
 default_priority: 0
 constrained_bw: 1
 high_priority: 2
 low_priority: 3

The QoS queue numbers are arbitrary and are used to map packets and flows
to queues that have been configured on the switch (separate to nmeta).

Port Sets Branch

Port Sets are used to abstract a set of switches/ports so that they
can be referenced elsewhere in the policy. Port Sets are located under the
root key port_sets.

Example:

port_sets:
 # Port Sets control what data plane ports policies and
 # features are applied on. Names must be unique.
 port_set_list:
 - name: port_set_location_internal
 port_list:
 - name: VirtualSwitch1-internal
 DPID: 8796748549206
 ports: 1-3,5,66
 vlan_id: 0
 - name: VirtualSwitch2-internal
 DPID: 255
 ports: 3,5
 vlan_id: 0

In this example, the port set port_set_location_internal refers to
specific ports on the switches with DPIDs of 8796748549206 and 255.

Locations Branch

Locations are a policy-defined aspect of an identity that are
based on the source or destination DPID/port, which is looked up
against a list that links location names to port sets.

Locations are located under the root key locations.

A default location must be defined.

Example:

locations:
 # Locations are logical groupings of ports. Takes first match.
 locations_list:
 - name: internal
 port_set_list:
 - port_set: port_set_location_internal
 - name: external
 port_set_list:
 - port_set: port_set_location_external
 default_match: unknown

System Config

A YAML file holds the system configuration. You wouldn’t normally need to
change this file from the defaults. It allows you to change values like
timers, database sizing and logging levels.

It’s location is:

~/nmeta/nmeta/config/config.yaml

These default configuration parameters can be overwritten by creating a file:

~/nmeta/nmeta/config/user/config.yaml

Add the parameters to the file that you want to override. For example, to
override the default console logging level for the tc_policy module, add
the following line to the user config file:

tc_policy_logging_level_c: INFO

Note that the user-defined config file will not be part of the git
distribution, as it is excluded in the .gitignore file.

Build a Lab

To run nmeta, you’re going to need an OpenFlow network to provide the data
plane connectivity.

There are many different options for building a lab network. The
choice is likely to come down to what resources you have and the use cases
you want to test.

Virtual labs are easy to set up and don’t require specialised hardware,
but aren’t useful for testing devices in the real world.

Physical labs are harder to construct and require hardware, but can be
used to connect real-world devices.

OpenFlow SDN disaggregates the data and control planes;
this means the lab environments can be used with different
OpenFlow controllers and apps, should you wish.

Physical Labs

OpenWRT with Open vSwitch

This lab is based on a TP-Link TL-WR1043ND Hardware Version 2.1 home router
that is re-flashed to run OpenWRT with Open vSwitch running OpenFlow (yes,
that’s three different pieces of software that start with the word ‘Open’...)

Be warned that reflashing a router is likely to void it’s warrantee, and may
result in the router becoming ‘bricked’, whereby it is unrecoverable. Continue
at your own risk...

You’ll also need a physical Linux PC with two NICs that has been built
with nmeta as per the install instructions.

The configuration of the lab is shown below:

[image: ../_images/Physical-Open-vSwitch-Lab-L3.png]
These instructions haven’t been tested end-to-end. Please raise an issue if
there are changes required.

Convert Router to OpenWRT

Start by converting the TP-Link TL-WR1043ND to running OpenWRT as per the
instructions from the OpenWRT website at:

https://wiki.openwrt.org/toh/tp-link/tl-wr1043nd

When router is successfully running OpenWRT, proceed to the next step:

Configure the Router

Apply a basic configuration to the router to allow remote access.

Connect a device with SSH capability to a LAN port on the TP-Link, set a static IP
address of 192.168.1.2 mask 255.255.255.0 (or use DHCP) and SSH to 192.168.1.1.

Set root password to something secure, and not used elsewhere.

Compile OpenWRT with Open vSwitch Image

Note: If you don’t want to compile your own image then consider using
an image from https://github.com/mattjhayes/TP-Link-TL-1043ND-OpenvSwitch
and jump ahead to http://nmeta.readthedocs.io/en/develop/userguide/build_a_lab.html#upgrade

Compilation Host

To compile the router firmware, use an Ubuntu 16.04.2 server or desktop
(can be virtual) with at least 30GB of disk space.

Clone OpenWRT

On the compilation host, clone OpenWRT (note: GitHub, not direct from OpenWRT site):

git clone https://github.com/openwrt/openwrt.git

Install Dependancies

sudo apt-get update
sudo apt-get install git-core build-essential libssl-dev libncurses5-dev unzip gawk zlib1g-dev
sudo apt-get install subversion mercurial
sudo apt-get install gcc-multilib flex gettext

Update Feeds

cd openwrt
./scripts/feeds update -a
./scripts/feeds install -a

Make MenuConfig

make menuconfig

Change Target Profile to suit hardware (select TP-LINK TL-WR1043N/ND for
TP-Link TL-WR1043ND Hardware Version 2.1):

[image: ../_images/OpenWRT_build_1.png]
Then select Kernel Modules -> Network Support -> kmod-tun:

[image: ../_images/OpenWRT_build_2.png]
Exit out back to main screen, then select Network -> Open vSwitch and
select:

[image: ../_images/OpenWRT_build_3.png]
Save on exit:

[image: ../_images/OpenWRT_build_4.png]
This one takes a while:

make kernel_menuconfig

When finished brings up another menu. Navigate to
Networking support -> Networking options and select
Hierarchical Token Bucket (HTB):

[image: ../_images/OpenWRT_build_5.png]

Run Make

This may take a couple of hours...

make

Patch for Wi-Fi Authentication

Standard OpenWRT build with Open vSwitch cannot run authentication on Wi-Fi,
see: https://forum.openwrt.org/viewtopic.php?id=59129

We apply a patch to fix this:

cd ~/openwrt/package/network/services/hostapd/
vi 710-hostapd-Initial-OVS-support.patch

Paste in contents of patch (starting from the —) from https://github.com/helmut-jacob/hostapd/commit/c89daaeca4ee90c8bc158e37acb1b679c823d7ab.patch
Save and exit.

Patch with Quilt. Install quilt:

sudo apt install quilt

In home dir, need to run this once:

cat > ~/.quiltrc <<EOF
QUILT_DIFF_ARGS="--no-timestamps --no-index -p ab --color=auto"
QUILT_REFRESH_ARGS="--no-timestamps --no-index -p ab"
QUILT_SERIES_ARGS="--color=auto"
QUILT_PATCH_OPTS="--unified"
QUILT_DIFF_OPTS="-p"
EDITOR="nano"
EOF

Run this from ~/openwrt/

make package/network/services/hostapd/{clean,prepare} V=s QUILT=1

cd to created directory:

cd ~/openwrt/build_dir/target-mips_34kc_musl-1.1.16/hostapd-wpad-mini/hostapd-2016-06-15/

Apply existing patches:

quilt push -a

Now at patch 710-hostapd-Initial-OVS-support.patch. Run this:

quilt edit src/main.c

Run this:

quilt refresh

Change dir to the build root and run

cd ../../../../
make package/network/services/hostapd/update V=s

Then run:

make package/network/services/hostapd/{clean,compile} package/index V=s

Then run:

make

Copy Image

Navigate to the directory where the output files are:

cd bin/ar71xx

There should be multiple files in the directory, including this file:

openwrt-ar71xx-generic-tl-wr1043nd-v2-squashfs-sysupgrade.bin

Use SCP to copy the appropriate file to the router:

scp ./openwrt-ar71xx-generic-tl-wr1043nd-v2-squashfs-sysupgrade.bin USERNAME@192.168.1.1:tmp/

Upgrade

Note: consider backing up config etc first...

Once image file is confirmed as being in the /tmp directory on the TPLink,
and you’re happy you’ve backed up your configurations, run the sysupgrade:

sysupgrade -v /tmp/openwrt-ar71xx-generic-tl-wr1043nd-v2-squashfs-sysupgrade.bin

Configure OpenWRT

OpenWRT needs to be configured to work with Open vSwitch. The configuration
has been tested, but needs to be changed to meet your requirements.

The following diagram shows how OpenWRT with Open vSwitch is configured
on the TP-Link hardware:

[image: ../_images/TPLink_Internals.png]

Dropbear

Configure Dropbear (SSH server) to listen on the WAN interface, in addition
to the LAN interface. This gives an additional way to access
the device to administer it, lowering the risk of bricking it.

Note: not a great idea doing this if Internet-facing for security reasons,
so remember to remove WAN config if you ever convert device back to an
Internet router.

Backup dropbear config:

cp /etc/config/dropbear /etc/config/dropbear.original

Add these lines to /etc/config/dropbear for WAN, full file is:

config dropbear
 option PasswordAuth 'on'
 option Port '22'
 option Interface 'lan'

config dropbear
 option PasswordAuth 'on'
 option Port '22'
 option Interface 'wan'

Firewall

Firewall (/etc/config/firewall) should be default permissive policy:

config defaults
 option syn_flood 1
 option input ACCEPT
 option output ACCEPT
 option forward ACCEPT

Network

Backup network config:

cp /etc/config/network /etc/config/network.original

This is the new complete /etc/config/network file:

config interface 'loopback'
 option ifname 'lo'
 option proto 'static'
 option ipaddr '127.0.0.1'
 option netmask '255.0.0.0'

config interface 'lan'
 option ifname 'eth1'
 option force_link '1'
 option type 'bridge'
 option proto 'static'
 option ipaddr '192.168.3.29'
 option netmask '255.255.255.0'

config interface 'wan'
 option ifname 'eth0'
 option proto 'static'
 option ipaddr '192.168.2.29'
 option netmask '255.255.255.0'
 option defaultroute '1'
 option gateway '192.168.2.40'
 option dns '8.8.8.8'

config switch
 option name 'switch0'
 option reset '1'
 option enable_vlan '1'

config switch_vlan
 option device 'switch0'
 option vlan '1'
 option ports '0 4'

config switch_vlan
 option device 'switch0'
 option vlan '2'
 option ports '5 6'

config switch_vlan
 option device 'switch0'
 option vlan '3'
 option ports '0t 1'

config switch_vlan
 option device 'switch0'
 option vlan '4'
 option ports '0t 2'

config switch_vlan
 option device 'switch0'
 option vlan '5'
 option ports '0t 3'

config interface
 option ifname 'eth1.3'
 option proto 'static'
 option ipv6 '0'

config interface
 option ifname 'eth1.4'
 option proto 'static'
 option ipv6 '0'

config interface
 option ifname 'eth1.5'
 option proto 'static'
 option ipv6 '0'

config interface 'wan6'
 option proto 'dhcpv6'
 option ifname '@wan'
 option reqprefix 'no'

config interface
 option ifname 'br0'
 option proto 'static'

config interface
 option ifname 'wlan0'
 option proto 'static'

Wireless

Backup wireless config:

cp /etc/config/wireless /etc/config/wireless.original

Take note of the items in CAPITALS that need you to fill in appropriate values.
This is the new complete /etc/config/wireless file:

config wifi-device 'radio0'
 option type 'mac80211'
 option channel '11'
 option hwmode '11g'
 option path 'platform/qca955x_wmac'
 option htmode 'HT20'
 option log_level '1'

config wifi-iface
 option device 'radio0'
 option network 'wlan0'
 option mode 'ap'
 option ssid 'YOUR_SSID_HERE'
 option encryption 'psk2'
 option key 'YOUR_KEY_HERE'

Configure Open vSwitch

Now it’s time to configure Open vSwitch by setting up bridge br0, adding
ports to it, then setting it to talk OpenFlow to the Controller:

ovs-vsctl add-br br0
ovs-vsctl add-port br0 eth1.3
ovs-vsctl add-port br0 eth1.4
ovs-vsctl add-port br0 eth1.5
ovs-vsctl add-port br0 wlan0
ovs-vsctl set-controller br0 tcp:192.168.2.40:6633

Configure Aliases

Aliases are useful for frequently run commands. Here are some suggested
aliases.

Edit file /etc/profile and add these lines:

OpenWRT Network Commands:
alias nwr='/etc/init.d/network restart'

Open vSwitch Commands:
alias ovshow='ovs-vsctl show'
alias ovmacs='ovs-appctl fdb/show br0'
alias ovrestart='/etc/init.d/openvswitch restart'

Open vSwitch OpenFlow Commands:
alias ofshow='ovs-ofctl show br0'
alias offlows='ovs-ofctl dump-flows br0'
alias ofports='ovs-ofctl dump-ports br0'

Log out and back in again to enable new aliases.

Cabling

Wire the environment together as per earlier diagram, and ensure the
Linux PC has it’s network interfaces configured correctly.

Checks

Using our aliases, here are checks to run:

ovshow
<snip>
 Bridge "br0"
 Controller "tcp:192.168.2.40:6633"
 is_connected: true
 Port "br0"
 Interface "br0"
 type: internal
 Port "wlan0"
 Interface "wlan0"
 Port "eth1.3"
 Interface "eth1.3"
 Port "eth1.4"
 Interface "eth1.4"
 Port "eth1.5"
 Interface "eth1.5"

Note the is_connected: true. This means OpenFlow has been established
to the controller.

Links

Instructions were based on these tutorials:

Building and Configuring Open vSwitch on OpenWrt for Cloud Networking byPravin R. [http://www.zymr.com/building-and-configuring-open-vswitch-on-openwrt-for-cloud-networking/]
Turning TP-LINK WR1043NDv2.1 router into OpenFlow-enabled switch by Lucas Burson [http://blog.ljdelight.com/turning-tp-link-wr1043ndv2-1-router-into-openflow-enabled-switch/]

Virtual Labs

Mininet with Vagrant

UNDER CONSTRUCTION

In this lab we use Vagrant [https://www.vagrantup.com/] to
automate the start up and build of multiple VirtualBox [https://www.virtualbox.org/]
Ubuntu guests.

These instructions assume you’re running Windows, but should be easily
adapted to other operating systems as most of the work happens within the
virtual environment.

Install VirtualBox

Download and install VirtualBox from https://www.virtualbox.org/wiki/Downloads

Install Vagrant

Download and install Vagrant from https://www.vagrantup.com/

Download a box

We will use the bento [https://app.vagrantup.com/bento] box of Ubuntu
16.04 in this lab. Download this box on your host machine with:

vagrant box add bento/ubuntu-16.04

Choose virtualbox option from menu

Clone Vagrant Repo

Clone the Vagrant repo from https://github.com/mattjhayes/Vagrant onto
your host machine.

Start the Guest

In a command prompt, from base of cloned repo, navigate to
the SDN_LabsMininet_Ryu_nmeta directory:

cd SDN_Labs\Mininet_Ryu_nmeta

Start the guest by running this on the host machine command prompt:

vagrant up

When the guest is up, connect to it with SSH on localhost:2222

username/password are both vagrant

run nmeta (from alias):

nm

Start a second SSH session and run the nmeta api:

nma

In a third SSH session run Mininet:

mnt

TBD - UNDER CONSTRUCTION

VirtualBox with Vagrant

UNDER CONSTRUCTION

In this lab we use Vagrant [https://www.vagrantup.com/] to
automate the start up and build of multiple VirtualBox [https://www.virtualbox.org/]
Ubuntu guests.

These instructions assume you’re running Windows, but should be easily
adapted to other operating systems as most of the work happens within the
virtual environment.

Install VirtualBox

Download and install VirtualBox from https://www.virtualbox.org/wiki/Downloads

Install Vagrant

Download and install Vagrant from https://www.vagrantup.com/

Download a box

We will use the bento [https://app.vagrantup.com/bento] box of Ubuntu
16.04 in this lab. Download this box on your host machine with:

vagrant box add bento/ubuntu-16.04

Choose virtualbox option from menu

Clone Vagrant Repo

Clone the Vagrant repo from https://github.com/mattjhayes/Vagrant onto
your host machine.

Start the Guest

In a command prompt, from base of cloned repo, navigate to
the SDN_LabsRyu_nmeta_SystemTestLab directory:

cd SDN_Labs\Ryu_nmeta_SystemTestLab

Start the guest by running this on the host machine command prompt:

vagrant up

When the guests are up, connect to the controller with SSH on localhost:2203
(first guests is port 2222 then ports 2200 and upwards for other guests)

username/password are both vagrant

run nmeta (from alias):

nm

Start a second SSH session and run the nmeta api:

nma

TBD - UNDER CONSTRUCTION

Web UI

The nmeta web UI provides a graphical interface into network metadata.
It is currently under construction, so functionality is limited
and results will vary...

To use the web UI, start nmeta (alias nm), start the nmeta external API
(alias nma) and then point a local (doesn’t have to be local) browser at:

http://localhost:8081/webUI/index.html

The home page looks like this:

[image: ../_images/webui-home.png]
The number of connected switches updates dynamically.

The architecture of the WebUI and REST interface are shown in
the diagram below:

[image: ../_images/webui_architecture.png]
The Web Server, Ryu/nmeta and the MongoDB database all run independently.
Backbone.js is the JavaScript framework used to power the UI in the browser.
Bootstrap is the web framework used to style the presentation of the UI.

APIs

Nmeta uses Python Eve to expose various RESTful API types:

	Flow APIs

	Identity APIs

	Infrastructure APIs

	Internal APIs

Flow APIs

Flow Mods API

The Flow Mods API is a read-only summary of all flow modifications made
to switches by the controller.

It is a native Python Eve API.

The API definition file is at:

~/nmeta/nmeta/api_definitions/flow_mods_api.py

Example manual invocation of the API:

curl http://localhost:8081/v1/flow_mods/ | python -m json.tool

Example response (showing only one of multiple records):

{
 "_items": [

 {
 "_created": "00:00:00.000000",
 "_etag": "21a20685ccf9080fbd31de81eb2802146907bf13",
 "_id": "59d807e101186126d01fc216",
 "_updated": "00:00:00.000000",
 "dpid": 1,
 "flow_hash": "c907986d4796fb669acb37efba3afc8e",
 "forward_cookie": 1,
 "forward_match": {
 "eth_type": 2048,
 "ip_proto": 6,
 "ipv4_dst": "10.1.0.1",
 "ipv4_src": "10.1.0.2",
 "tcp_dst": 36296,
 "tcp_src": 80
 },
 "match_type": "dual",
 "reverse_cookie": 2,
 "reverse_match": {
 "eth_type": 2048,
 "ip_proto": 6,
 "ipv4_dst": "10.1.0.2",
 "ipv4_src": "10.1.0.1",
 "tcp_dst": 80,
 "tcp_src": 36296
 },
 "standdown": 0,
 "suppress_type": "suppress",
 "timestamp": "11:46:57.940000"
 },

Flows API

The Flows API is a read-only summary of all flows recorded by the controller.

It is a native Python Eve API.

The API definition file is at:

~/nmeta/nmeta/api_definitions/flows_api.py

Example manual invocation of the API:

curl http://localhost:8081/v1/flows/ | python -m json.tool

Example response (showing only one of multiple records):

{
 "_items": [
 {
 "_created": "00:00:00.000000",
 "_etag": "6fbc72e6d279932c763db5852312ccd4b4f6d4cc",
 "_id": "59d81f3a0118612dd314c8b0",
 "_updated": "00:00:00.000000",
 "client_ip": "10.1.0.1",
 "dpid": 2,
 "flow_hash": "3c1a773547e36469500f64ad0b34efb2",
 "forward_cookie": 1,
 "forward_match": {
 "eth_type": 2048,
 "ip_proto": 6,
 "ipv4_dst": "10.1.0.2",
 "ipv4_src": "10.1.0.1",
 "tcp_dst": 80,
 "tcp_src": 36299
 },
 "match_type": "dual",
 "reverse_cookie": 2,
 "reverse_match": {
 "eth_type": 2048,
 "ip_proto": 6,
 "ipv4_dst": "10.1.0.1",
 "ipv4_src": "10.1.0.2",
 "tcp_dst": 36299,
 "tcp_src": 80
 },
 "standdown": 0,
 "suppress_type": "suppress",
 "timestamp": "13:26:34.546000"
 }

Flows UI API

The Flows UI API is a read-only summary of all flows recorded by the
controller, tailored for use by the WebUI. It features the following:
- Flow direction normalised to direction of first packet in flow
- Src and Dst are IP or Layer 2 to optimise screen space
- Extra data included for hover-over tips
- Enriched with classification and action(s)
- Enriched with data xfer (only applies to flows that have had idle timeout)

It is not a native Python Eve API.

The API definition file is at:

~/nmeta/nmeta/api_definitions/flows_ui.py

Example manual invocation of the API:

curl http://localhost:8081/v1/flows/ui/ | python -m json.tool

Flows Removed API

The Flows Removed API is a read-only summary of all removed flows recorded by
the controller (switches send flow removal messages to the controller). It
does not deduplicate for same flow being removed from multiple switches.

The API definition file is at:

~/nmeta/nmeta/api_definitions/flows_removed_api.py

Flows Removed API

Example manual invocation of the API:

curl http://localhost:8081/v1/flows_removed/ | python -m json.tool

Example response (showing only one of multiple records):

{
 "_items": [
 {
 "_created": "00:00:00.000000",
 "_etag": "4c6fba64b571e392f578aa6804b5ad45149a1b5c",
 "_id": "59b3213f01186111d817494c",
 "_updated": "00:00:00.000000",
 "byte_count": 468,
 "cookie": 5,
 "dpid": 1,
 "duration_sec": 31,
 "eth_A": "",
 "eth_B": "",
 "eth_type": 2048,
 "flow_hash": "fada031e16b76ef92e68aa516123c500",
 "hard_timeout": 0,
 "idle_timeout": 30,
 "ip_A": "10.1.0.1",
 "ip_B": "10.1.0.2",
 "ip_proto": 6,
 "packet_count": 7,
 "priority": 1,
 "reason": 0,
 "removal_time": "11:01:19.121000",
 "table_id": 0,
 "tp_A": 45593,
 "tp_B": 80
 },

Flows Removed Stats Count

Example manual invocation of the API:

curl http://localhost:8081/v1/flows_removed/stats/count | python -m json.tool

Example response:

{
 "flows_removed": 4
}

Flows Removed Stats Bytes Sent

Aggregates and sums byte_count by source IP address. Deduplicates for same
flow hash removed from multiple switches and reverse sorts by bytes

Example manual invocation of the API:

curl http://localhost:8081/v1/flows_removed/stats/bytes_sent | python -m json.tool

Example response:

{
 "_items": [
 {
 "_id": "10.1.0.2",
 "identity": "10.1.0.2",
 "total_bytes_sent": 3532
 },
 {
 "_id": "10.1.0.1",
 "identity": "pc1",
 "total_bytes_sent": 1404
 }
]
}

Flows Removed Stats Bytes Received

Aggregates and sums byte_count by destination IP address. Deduplicates for same
flow hash removed from multiple switches and reverse sorts by bytes

Example manual invocation of the API:

curl http://localhost:8081/v1/flows_removed/stats/bytes_received | python -m json.tool

Example response:

{
 "_items": [
 {
 "_id": "10.1.0.1",
 "identity": "pc1",
 "total_bytes_received": 3532
 },
 {
 "_id": "10.1.0.2",
 "identity": "10.1.0.2",
 "total_bytes_received": 1404
 }
]
}

Classifications

The classifications API returns the results of traffic classifications on
flows.

Example manual invocation of the API:

curl http://localhost:8081/v1/classifications | python -m json.tool

Example response (showing only one of multiple records):

{
 "_items": [
 {
 "_created": "00:00:00.000000",
 "_etag": "2edf91b82d854695895ee44cffbcd5886209d12b",
 "_id": "59f4e7f2011861131aea939a",
 "_updated": "00:00:00.000000",
 "actions": {
 "qos_treatment": "constrained_bw",
 "set_desc": "Constrained Bandwidth Traffic"
 },
 "classification_tag": "Constrained Bandwidth Traffic",
 "classification_time": "09:26:26.131000",
 "classified": true,
 "flow_hash": "7af8ea9080506199633414caba6259e6"
 },

Identity APIs

Identities API

The Identities API is a read-only summary of all identity records harvested
by the controller.

It is a native Python Eve API.

The API definition file is at:

~/nmeta/nmeta/api_definitions/identities_api.py

Example manual invocation of the API:

curl http://localhost:8081/v1/identities/ | python -m json.tool

Example response (showing only one of multiple records):

{
 "_items": [
 {
 "_created": "00:00:00.000000",
 "_etag": "79b7626eba366805e4723ce81751c100b447d04c",
 "_id": "59b3206801186111d817487b",
 "_updated": "00:00:00.000000",
 "dpid": 2,
 "harvest_time": "10:57:43.997000",
 "harvest_type": "ARP",
 "host_desc": "",
 "host_name": "",
 "host_os": "",
 "host_type": "",
 "id_hash": "aafeaa6798c9ef3761f7afe51dd3cf7d",
 "in_port": 2,
 "ip_address": "10.1.0.1",
 "mac_address": "08:00:27:2a:d6:dd",
 "service_alias": "",
 "service_name": "",
 "user_id": "",
 "valid_from": "10:57:43.997000",
 "valid_to": "14:57:43.997000"
 },

Identities UI API

The Identities API is a read-only summary of all identity records harvested
by the controller, tailored for use by the WebUI. It features the following:
- Reverse sort by harvest time
- Deduplicate by id_hash, only returning most recent per id_hash
- Includes possibly stale records
- Checks DNS identities to see if they are from a CNAME, and if so includes

IP address from the A record

	Optional filtering out of DNS identities by setting ‘?filter_dns=1’ on URI

It is not a native Python Eve API.

The API definition file is at:

~/nmeta/nmeta/api_definitions/identities_ui.py

Example manual invocation of the API:

curl http://localhost:8081/v1/identities/ui/ | python -m json.tool

Example response (showing only one of multiple records):

{
 "_items": [
 {
 "_id": "59b31fc301186111d81747ae",
 "dpid": 1,
 "harvest_time": "10:54:59.131000",
 "harvest_type": "LLDP",
 "host_desc": "Ubuntu 16.04.2 LTS Linux 4.4.0-93-generic #116-Ubuntu SMP Fri Aug 11 21:17:51 UTC 2017 x86_64",
 "host_name": "sw2.example.com",
 "host_os": "",
 "host_type": "",
 "id_hash": "ab044209ef247d208ca1e88c5727ba0c",
 "in_port": 2,
 "ip_address": "",
 "location_logical": "internal",
 "location_physical": "",
 "mac_address": "08:00:27:ea:23:84",
 "service_alias": "",
 "service_name": "",
 "user_id": "",
 "valid_from": "10:54:59.131000",
 "valid_to": "10:56:59.131000"
 },

Infrastructure APIs

APIs expose nmeta performance and state data. They are used by the
nmeta WebUI and can be used for other applications.

Be aware that some non-native Python Eve APIs have limited feature support
(i.e. may not support filtering)

Controller Summary API

The Controller Summary API is a read-only summary of the current controller
performance metrics.

It is not a native Python Eve API.

The API definition file is at:

~/nmeta/nmeta/api_definitions/controller_summary.py

Example manual invocation of the API:

curl http://localhost:8081/v1/infrastructure/controllers/summary/ | python -m json.tool

PI Rate API

The PI Rate API is a read-only metric for the rate at which the controller
is receiving packet-in (PI) messages.

It is not a native Python Eve API.

The API definition file is at:

~/nmeta/nmeta/api_definitions/pi_rate.py

Example manual invocation of the API:

curl http://localhost:8081/v1/infrastructure/controllers/pi_rate/ | python -m json.tool

Example response:

{
 "pi_rate": 0.2,
 "timestamp": "19:21:35"
}

PI Time API

The PI Time API is a read-only set of metrics for the timeliness of the
controller in processing packet-in (PI) messages. It is measured over the
length of time defined by PACKET_TIME_PERIOD, as defined in api_external.py,
and returned in the API as the key pi_time_period.

It is not a native Python Eve API.

The API definition file is at:

~/nmeta/nmeta/api_definitions/pi_time.py

Example manual invocation of the API:

curl http://localhost:8081/v1/infrastructure/controllers/pi_time/ | python -m json.tool

Example response:

{
"pi_time_avg": 0.05947005748748779,
"pi_time_max": 0.06364011764526367,
"pi_time_min": 0.055299997329711914,
"pi_time_period": 10,
"pi_time_records": 2,
"ryu_time_avg": 0.0007699728012084961,
"ryu_time_max": 0.0008089542388916016,
"ryu_time_min": 0.0007309913635253906,
"ryu_time_period": 10,
"ryu_time_records": 2,
"timestamp": "19:50:40"
}

Switches API

The Switches API provides information on switches connected to the
controller.

The API definition file is at:

~/nmeta/nmeta/api_definitions/switches_api.py

Switch Details

The Switch Details API is a read-only summary of all switches currently
connected to controller.

Example manual invocation of the API:

curl http://localhost:8081/v1/infrastructure/switches/ | python -m json.tool

Example response:

{
 "_items": [
 {
 "_created": "00:00:00.000000",
 "_etag": "e9cf4f29afa425bc0486cda334c56017d3d6e2ca",
 "_id": "59854e3ee14ebffa9f4f4e7b",
 "_updated": "00:00:00.000000",
 "dp_desc": "None",
 "dpid": 1,
 "hw_desc": "Open vSwitch",
 "ip_address": "172.16.0.5",
 "mfr_desc": "Nicira, Inc.",
 "port": 46074,
 "serial_num": "None",
 "sw_desc": "2.5.2",
 "time_connected": "16:49:01.795000"
 },
 {
 "_created": "00:00:00.000000",
 "_etag": "e8ff778368901540349b2a9625893b1b4763b362",
 "_id": "59854e41e14ebffa9f4f4e80",
 "_updated": "00:00:00.000000",
 "dp_desc": "None",
 "dpid": 2,
 "hw_desc": "Open vSwitch",
 "ip_address": "172.16.0.9",
 "mfr_desc": "Nicira, Inc.",
 "port": 34090,
 "serial_num": "None",
 "sw_desc": "2.5.2",
 "time_connected": "16:49:05.706000"
 }
],
 "_meta": {
 "max_results": 25,
 "page": 1,
 "total": 2
 }
}

Switch Count

The Switch Count API is a read-only count of all switches currently
connected to controller.

Example manual invocation of the API:

curl http://localhost:8081/v1/infrastructure/switches/stats/connected_switches | python -m json.tool

Example response:

{
 "connected_switches": 2
}

Internal APIs

No internal APIs exist yet. They are planned to implement connectivity between
the API instance and the main nmeta code for interaction into non-database
components of nmeta.

Extend Nmeta

Custom Classifiers

Nmeta supports the creation of custom classifiers to extend classification,
leveraging any network metadata. See the configure chapter for how to
reference a custom classifier from main_policy.yaml.

Custom classifiers have access to the flow and identity abstractions (see
develop chapter)

Develop

Want to develop the nmeta code and contribute to the codebase? Great! Read on
for documentation on how the code is structured and some of the principles.

Code Structure

Nmeta runs in 3 separate processes.

	The Ryu process runs within the context of the Ryu OpenFlow controller.

	The MongoDB process is a MongoDB database

	The api_external process runs the external REST API

[image: ../_images/nmeta_code_structure_simple.png]

Data Structures

Nmeta uses various data structures to store network metadata related
to participants and flows (conversations).

High level abstractions of participants and flows abstract the details
of the various MongoDB collections.

Information Abstractions

Flows Abstraction

The flows object provides an abstraction of flows (conversations) that
have been seen on the network. Flow metrics are in the context of the flow
that the last packet-in ingested packet belonged to. The packet context
is likewise that of the packet from that event.

[image: ../_images/flows_abstraction.png]
Classifiers can make use of the flows object to gain easy access to
features of the current flow.

Identities Abstraction

The identities object provides an abstraction for participants (identities)
that are known to nmeta. Classifiers can use the identities object to
look up the identity information of participants.

[image: ../_images/identities_abstraction.png]

Database Collections

Nmeta uses capped MongoDB database collections to obviate the need
to maintain size by pruning old entries.

packet-ins

[image: ../_images/data_struct_packet_ins.png]

pi_time

The pi_time database collection stores data on how long nmeta took
to process individual packet-in events, and what type of outcome nmeta
decided upon for the packet.

[image: ../_images/data_struct_pi_time.png]

classifications

[image: ../_images/data_struct_classifications.png]

identities

[image: ../_images/identities.png]

flow_mods

[image: ../_images/flow_mods.png]

flow_rems

[image: ../_images/flow_rems.png]

dhcp_v4

[image: ../_images/dhcp_v4.png]

Logging

Logging is configured separately for syslog and to the console, and levels
are configurable per Python module. The log format is also customisable.

Logging configuration is controlled by the system configuration YAML file.

Logging settings are configured separately for console and
syslog logging.

By default, logging levels are set to INFO.

Supported logging levels are:

	CRITICAL

	ERROR

	WARNING

	INFO

	DEBUG

To change the default logging levels, create a user configuration
YAML file (if it doesn’t already exist) as the following filename:

~/nmeta/nmeta/config/user/config.yaml

Override specific settings from the default configuration file from the
directory below.

Example:

Set nmeta.py console logging to DEBUG level:
nmeta_logging_level_c: DEBUG

Code Documentation

	nmeta module

	policy module

	tc_static module

	tc_identity module

	tc_custom module

	api_external module

	config module

	flows module

	identities module

	forwarding module

	switches module

	nethash module

nmeta module

This is the main module of the nmeta suite running on top of Ryu SDN controller
to provide network identity and flow (traffic classification) metadata
.
Do not use this code for production deployments - it is proof of concept code
and carries no warrantee whatsoever. You have been warned.

	
class nmeta.NMeta(*args, **kwargs)

	Bases: ryu.base.app_manager.RyuApp, baseclass.BaseClass

This is the main class used to run nmeta

	
OFP_VERSIONS = [4]

	

	
switch_connection_handler(event)

	A switch has connected to the SDN controller.
We need to do some tasks to set the switch up properly
such as setting it’s config for fragment handling
and table miss packet length and requesting the
switch description

	
desc_stats_reply_handler(event)

	Receive a reply from a switch to a description
statistics request

	
switch_down_handler(event)

	OpenFlow state has gone down for a given DPID

	
packet_in(event)

	This method is called for every Packet-In event from a Switch.
We receive a copy of the Packet-In event, pass it to the
traffic classification area for analysis, work out the forwarding,
update flow metadata, then add a flow entry to the switch (when
appropriate) to suppress receiving further packets on this flow.
Finally, we send the packet out the switch port(s) via a
Packet-Out message, with appropriate QoS queue set.

	
flow_removed_handler(event)

	A switch has sent an event to us because it has removed
a flow from a flow table

	
error_msg_handler(event)

	A switch has sent us an error event

	
_port_status_handler(event)

	Switch Port Status event

	
class nmeta.PITelemetry(pi_start_time, event, logger, pi_time_col)

	Bases: object

Telemetry data for a single Packet-In (PI) event

	
record_outcome(outcome)

	Calculate the elapsed time for processing this packet-in event
and record to the pi_time database collection. Also
record the outcome for the packet, one of:
- drop_same_port
- drop_reserved_mac
- drop_action
- packet_out_flooded
- packet_out
Additionally, record time taken queueing event in Ryu (if available).

	
nmeta.ipv4_text_to_int(ip_text)

	Takes an IP address string and translates it
to an unsigned integer

policy module

This module is part of the nmeta suite running on top of Ryu SDN controller.
It provides a policy class as an interface to policy configuration and
classification of packets against policy.

See Policy class docstring for more information.

	
policy.validate(logger, data, schema, where)

	Generic validation of a data structure against schema
using Voluptuous data validation library
Parameters:

	logger: valid logger reference

	data: structure to validate

	schema: a valid Voluptuous schema

	where: string for debugging purposes to identity the policy location

	
policy.validate_port_set_list(logger, port_set_list, policy)

	Validate that a list of dictionaries [{‘port_set’: str}]
reference valid port_sets. Return Boolean 1 if good otherwise
exit with exception

	
policy.validate_location(logger, location, policy)

	Validator for location compliance (i.e. check that the supplied
location string exists as a location defined in policy)
Return Boolean True if good, otherwise exit with exception

	
policy.validate_type(type, value, msg)

	Used for Voluptuous schema validation.
Check a value is correct type, otherwise raise Invalid exception,
including elaborated version of msg

	
policy.transform_ports(ports)

	Passed a ports specification and return a list of
port numbers for easy searching.
Example:
Ports specification “1-3,5,66” becomes list [1,2,3,5,66]

	
policy.validate_ports(ports)

	Custom Voluptuous validator for a list of ports.
Example good ports specification:

1-3,5,66

Will raise Voluptuous Invalid exception if types or
ranges are not correct

	
policy.validate_time_of_day(time_of_day)

	Custom Voluptuous validator for time of day compliance.
Returns original time of day if compliant, otherwise
raises Voluptuous Invalid exception

	
policy.validate_macaddress(mac_addr)

	Custom Voluptuous validator for MAC address compliance.
Returns original MAC address if compliant, otherwise
raises Voluptuous Invalid exception

	
policy.validate_macaddress_OLD(mac_addr)

	Custom Voluptuous validator for MAC address compliance.
Returns original MAC address if compliant, otherwise
raises Voluptuous Invalid exception

	
policy.validate_ip_space(ip_addr)

	Custom Voluptuous validator for IP address compliance.
Can be IPv4 or IPv6 and can be range or have CIDR mask.
Returns original IP address if compliant, otherwise
raises Voluptuous Invalid exception

	
policy.validate_ethertype(ethertype)

	Custom Voluptuous validator for ethertype compliance.
Can be in hex (starting with 0x) or decimal.
Returns ethertype if compliant, otherwise
raises Voluptuous Invalid exception

	
class policy.Policy(config, pol_dir_default='config', pol_dir_user='config/user', pol_filename='main_policy.yaml')

	Bases: baseclass.BaseClass

This policy class serves 4 main purposes:
- Ingest policy (main_policy.yaml) from file
- Validate correctness of policy against schema
- Classify packets against policy, passing through to static,

identity and custom classifiers, as required

	Other methods and functions to check various parameters
against policy

Note: Class definitions are not nested as not considered Pythonic

Main Methods and Variables:
- check_policy(flow, ident) # Check a packet against policy
- qos(qos_treatment) # Map qos_treatment string to queue number
- main_policy # main policy YAML object. Read-only,

no verbs. Use methods instead where
possible.

TC Methods and Variables:
- tc_rules.rules_list # List of TC rules
- tc_rules.custom_classifiers # dedup list of custom classifier names

	
check_policy(flow, ident)

	Passed a flows object, set in context of current packet-in event,
and an identities object.
Check if packet matches against any policy
rules and if it does, update the classifications portion of
the flows object to reflect details of the classification.

	
qos(qos_treatment)

	Passed a QoS treatment string and return the relevant
QoS queue number to use, otherwise 0. Works by lookup
on qos_treatment section of main_policy

	
class policy.TCRules(policy)

	Bases: object

An object that represents the tc_rules root branch of
the main policy

	
class policy.TCRule(tc_rules, policy, idx)

	Bases: object

An object that represents a single traffic classification
(TC) rule.

	
check_tc_rule(flow, ident)

	Passed Packet and Identity class objects.
Check to see if packet matches conditions as per the
TC rule. Return a TCRuleResult object

	
class policy.TCRuleResult(rule_actions)

	Bases: object

An object that represents a traffic classification
result, including any decision collateral
on matches and actions.
Use __dict__ to dump to data to dictionary

	
accumulate(condition_result)

	Passed a TCConditionResult object and
accumulate values into our object

	
add_rule_actions()

	Add rule actions from policy to the actions of this class

	
class policy.TCCondition(tc_rules, policy, policy_snippet)

	Bases: object

An object that represents a single traffic classification
(TC) rule condition from a conditions list
(contains a match type and a list of one or more classifiers)

	
check_tc_condition(flow, ident)

	Passed a Flow and Identity class objects. Check to see if
flow.packet matches condition (a set of classifiers)
as per the match type.
Return a TCConditionResult object with match information.

	
class policy.TCConditionResult

	Bases: object

An object that represents a traffic classification condition
result. Custom classifiers can return additional parameters
beyond a Boolean match, so cater for these too.
Use __dict__ to dump to data to dictionary

	
accumulate(classifier_result)

	Passed a TCClassifierResult object and
accumulate values into our object

	
class policy.TCClassifierResult(policy_attr, policy_value)

	Bases: object

An object that represents a traffic classification classifier
result. Custom classifiers can return additional parameters
beyond a Boolean match, so cater for these too.
Use __dict__ to dump to data to dictionary

	
class policy.QoSTreatment(policy)

	Bases: object

An object that represents the qos_treatment root branch of
the main policy

	
class policy.PortSets(policy)

	Bases: object

An object that represents the port_sets root branch of
the main policy

	
get_port_set(dpid, port, vlan_id=0)

	Check if supplied dpid/port/vlan_id is member of
a port set and if so, return the port_set name. If no
match return empty string.

	
class policy.PortSet(policy, idx)

	Bases: object

An object that represents a single port set

	
is_member(dpid, port, vlan_id=0)

	Check to see supplied dpid/port/vlan_id is member of
this port set. Returns a Boolean

	
class policy.Locations(policy)

	Bases: object

An object that represents the locations root branch of
the main policy

	
get_location(dpid, port)

	Passed a DPID and port and return a logical location
name, as per policy configuration.

	
class policy.Location(policy, idx)

	Bases: object

An object that represents a single location

	
check(dpid, port)

	Check a dpid/port to see if it is part of this location
and if so return the string name of the location otherwise
return empty string

tc_static module

This module is part of the nmeta suite running on top of Ryu SDN controller
to provide network identity and flow (traffic classification) metadata

	
class tc_static.StaticInspect(config, policy)

	Bases: baseclass.BaseClass

This class provides methods to check
static traffic classification (TC) classifier matches

	
check_static(classifier_result, pkt)

	Passed TCClassifierResult and Flow.Packet class objects
Update the classifier_result match with boolean of result
of match checks

	
is_valid_macaddress(value_to_check)

	Passed a prospective MAC address and check that
it is valid.
Return 1 for is valid IP address and 0 for not valid

	
is_valid_ethertype(value_to_check)

	Passed a prospective EtherType and check that
it is valid. Can be hex (0x*) or decimal
Return 1 for is valid IP address and 0 for not valid

	
is_valid_ip_space(value_to_check)

	Passed a prospective IP address and check that
it is valid. Can be IPv4 or IPv6 and can be range or have CIDR mask
Return 1 for is valid IP address and 0 for not valid

	
is_valid_transport_port(value_to_check)

	Passed a prospective TCP or UDP port number and check that
it is an integer in the correct range.
Return 1 for is valid port number and 0 for not valid port
number

	
is_match_time_of_day(time_of_day_range, time_now=datetime.time(9, 11, 48, 719803))

	Passed a time of day range (format HH:MM-HH:MM) and check to
see if the current time is in that range.
Return True if time is in range, otherwise False

	
is_match_macaddress(value_to_check1, value_to_check2)

	Passed a two prospective MAC addresses and check to
see if they are the same address.
Return 1 for both the same MAC address and 0 for different

	
is_match_ethertype(value_to_check1, value_to_check2)

	Passed a two prospective EtherTypes and check to
see if they are the same.
Return 1 for both the same EtherType and 0 for different
Values can be hex or decimal and are 2 bytes in length

	
is_match_ip_space(ip_addr, ip_space)

	Passed an IP address and an IP address space and check
if the IP address belongs to the IP address space.
If it does return 1 otherwise return 0

tc_identity module

This module is part of the nmeta suite running on top of Ryu SDN controller
to provide network identity and flow (traffic classification) metadata

	
class tc_identity.IdentityInspect(config)

	Bases: baseclass.BaseClass

This class is instantiated by policy.py and provides methods to
ingest identity updates and query identities

	
check_identity(classifier_result, pkt, ident)

	Checks if a given packet matches a given identity match rule.
Passed TCClassifierResult, Flow.Packet and Identities class
objects and update the classifier_result match based on whether
or not either of the packet IP addresses matches the identity
attribute/value. Uses methods of the Identities class to work
this out

	
check_lldp(host_name, pkt, ident, is_regex=False)

	Passed a hostname, flows packet object, an instance of
the identities class and a regex boolean (if true, hostname
is treated as regex).
Return True or False based on whether or not the packet has
a source or destination IP address that matches the IP address
registered to the given hostname via LLDP harvest (if one even exists).
Uses methods of the Identities class to work this out.
Returns boolean

	
check_dhcp(host_name, pkt, ident, is_regex=False)

	Passed a hostname, flows packet object, an instance of
the identities class and a regex boolean (if true, hostname
is treated as regex).
Return True or False based on whether or not the packet has
a source or destination IP address that matches the IP address
registered to the given hostname via DHCP harvest (if one even exists).
Uses methods of the Identities class to work this out.
Returns boolean

	
check_dns(dns_name, pkt, ident, is_regex=False)

	Passed a DNS name, flows packet object, an instance of
the identities class and a regex boolean (if true, DNS name
is treated as regex).
Return True or False based on whether or not the packet has
a source or destination IP address that has been resolved from the
DNS name. Uses methods of the Identities class to work this out.
Returns boolean

tc_custom module

This module is part of the nmeta suite running on top of Ryu SDN controller
to provide network identity and flow (traffic classification) metadata

	
class tc_custom.CustomInspect(config)

	Bases: baseclass.BaseClass

This class is instantiated by policy.py and provides methods to
run custom traffic classification modules

	
check_custom(classifier_result, flow, ident)

	Passed TCClassifierResult, Flow.Packet and Identities class objects.
Call the named custom classifier with these values so that it
can update the classifier_result match as appropriate.

	
instantiate_classifiers(custom_list)

	Dynamically import and instantiate classes for any
custom classifiers specified in the controller
nmeta2 main_policy.yaml

Passed a deduplicated list of custom classifier names
(without .py) to load.

Classifier modules live in the ‘custom_classifiers’ subdirectory

api_external module

The api_external module is part of the nmeta suite, but is run
separately

This module runs a class and methods for an API that
exposes an interface into nmeta MongoDB collections.

It leverages the Eve Python REST API Framework

	
class api_external.ExternalAPI(config)

	Bases: baseclass.BaseClass

This class provides methods for the External API

	
class FlowUI

	Bases: object

An object that represents a flow record to be sent in response
to the WebUI. Features:

	Flow direction normalised to direction of
first packet in flow

	Src and Dst are IP or Layer 2 to optimise screen space

	Extra data included for hover-over tips

Note that there should not be any display-specific data (i.e. don’t
send any HTML, leave this to the client code)

	
response()

	Return a dictionary object of flow parameters
for sending in response

	
run()

	Run the External API instance

Note that API definitions are from previously imported
files from api_definitions subdirectory

	
response_pi_rate(items)

	Update the response with the packet_in rate.
Hooked from on_fetched_resource_pi_rate

Returns key/values for packet-in processing time in API response:
- timestamp
- pi_rate

	
response_pi_time(items)

	Update the response with the packet_time min, avg and max.
Hooked from on_fetched_resource_pi_time

Returns key/values for packet-in processing time in API response:
- timestamp
- ryu_time_max
- ryu_time_min
- ryu_time_avg
- ryu_time_period
- ryu_time_records
- pi_time_max
- pi_time_min
- pi_time_avg
- pi_time_period
- pi_time_records

If no data found within time period then returns without
key/values

	
response_controller_summary(items)

	Update the response with the packet_in rate, packet processing
time stats

Hooked from on_fetched_resource_controller_summary

Rounds seconds results

	
response_identities_ui(items)

	
	Populate the response with identities that are filtered:

	
	Reverse sort by harvest time

	Deduplicate by id_hash, only returning most recent per id_hash

	Includes possibly stale records

	Check DNS A records to see if they are from a CNAME

Hooked from on_fetched_resource_<name>

	
response_flows_removed_stats_count(items)

	Return count of removed flows collection

	
response_flows_removed_src_bytes_sent(items)

	Returns removed flow bytes sent by session source IP (deduplicated
for flows crossing multiple switches), enriched with identity metadata.

	
response_flows_removed_src_bytes_received(items)

	Returns removed flow bytes received by session source IP (deduplicated
for flows crossing multiple switches), enriched with identity metadata.

	
response_flows_removed_dst_bytes_sent(items)

	Returns removed flow bytes sent by session destination IP (deduplicated
for flows crossing multiple switches), enriched with identity metadata.

	
response_flows_removed_dst_bytes_received(items)

	Returns removed flow bytes received by session destination IP (dedup
for flows crossing multiple switches), enriched with identity metadata.

	
response_flows_ui(items)

	
	Populate the response with flow entries that are filtered:

	
	Reverse sort by initial ingest time

	Deduplicate by flow_hash, only returning most recent per flow_hash

	Enrich with TBD

Hooked from on_fetched_resource_<name>

	
response_switches_count(items)

	Populate the response with number of connected switches.

	
flow_match(flow, flows_filterlogicselector, flows_filtertypeselector, filter_string)

	Passed an instance of FlowUI class, a logic selector,
filter type and filter string.

Return a boolean on whether or not that theres a match.

	
flow_augment_record(record)

	Passed a record of a single flow from the packet_ins
database collection.

Create FlowUI class instance, add in known data and
augment with identity data. Logic is specific to the
webUI user experience.

Return the FlowUI class instance

	
get_flow_data_xfer(record)

	Passed a record of a single flow from the packet_ins
database collection.

Enrich this by looking up data transfer stats
(which may not exist) in flow_rems database collection,
and return dictionary of the values.

Note that the data sent (tx) and received (rx) records
will have different flow hashes.

	
get_classification(flow_hash)

	Passed flow_hash and return a dictionary
of a classification object for the flow_hash (if found), otherwise
a dictionary of an empty classification object.

	
flow_normalise_direction(record)

	Passed a dictionary of an flow record and return a similar
dictionary that has sources and destinations normalised to the
direction of the first observed packet in the flow

	
get_flow_client_ip(flow_hash)

	Find the IP that is the originator of a flow searching
forward by flow_hash

Finds first packet seen for the flow_hash within the time
limit and returns the source IP, otherwise 0,

	
get_id(ip_addr)

	Passed an IP address. Look this up for matching identity
metadata and return a string that contains either the original
IP address or an identity string

	
get_dns_ip(service_name)

	Use this to get an IP address for a DNS lookup that returned a CNAME
Passed a DNS CNAME and look this up in identities
collection to see if there is a DNS A record, and if so return the
IP address, otherwise return an empty string.

	
get_pi_rate(test=0)

	Calculate packet-in rate by querying packet_ins database
collection.

Setting test=1 returns database query execution statistics

	
get_pi_time()

	Calculate packet processing time statistics by querying
the pi_time database collection.

	
api_external.enumerate_eth_type(eth_type)

	Passed an eth_type (in decimal) and return an enumerated version,
or if not found, return the original value.
Example, pass this function value 2054 and it return will be ‘ARP’

	
api_external.hovertext_eth_type(eth_type)

	Passed an eth_type (decimal, not enumerated) and
return it wrapped in extra text to convey context

	
api_external.enumerate_ip_proto(ip_proto)

	Passed an IP protocol number (in decimal) and return an
enumerated version, or if not found, return the original value.
Example, pass this function value 6 and it return will be ‘TCP’

	
api_external.hovertext_ip_proto(ip_proto)

	Passed an IP protocol number (decimal, not enumerated) and
return it wrapped in extra text to convey context

	
api_external.hovertext_ip_addr(ip_addr)

	Passed an IP address and return it
wrapped in extra text to convey context

config module

The config module is part of the nmeta suite.

It represents nmeta configuration data.

It loads configuration from file, validates keys and provides
access to values

It expects a file called “config.yaml” to be in the config
subdirectory, containing properly formed YAML

	
class config.Config(dir_default='config', dir_user='config/user', config_filename='config.yaml')

	Bases: baseclass.BaseClass

This class is instantiated by nmeta.py and provides methods to
ingest the configuration file and provides access to the
keys/values that it contains.
Config file is in YAML in config subdirectory and is
called ‘config.yaml’

	
ingest_config_default(config_filename, dir_default)

	Ingest default config file

	
ingest_config_user(config_filename, dir_user)

	Ingest user config file that overrides values set in the
default config file.

	
ingest_config_file(fullpath)

	Passed full path to a YAML-formatted config file
and ingest into a dictionary

	
get_value(config_key)

	Passed a key and see if it exists in the config YAML. If it does
then return the value, if not return 0

	
inherit_logging(config)

	Call base class method to set up logging properly for
this class now that it is running

flows module

The flows module is part of the nmeta suite

It provides an abstraction for conversations (flows), using
a MongoDB database for storage and data retention maintenance.

Flows are identified via an indexed bi-directionally-unique
hash value, derived from IP-value-ordered 5-tuple (source and
destination IP addresses, IP protocol and transport source and
destination port numbers).

Ingesting a packet puts the flows object into the context of the
packet that flow belongs to, and updates the database object for
that flow with information from the current packet.

There are various methods (see class docstring) that provide views
into the state of the flow.

	
class flows.Flow(config)

	Bases: baseclass.BaseClass

An object that represents a flow that we are classifying

Intended to provide an abstraction of a flow that classifiers
can use to make determinations without having to understand
implementations such as database lookups etc.

Be aware that this module is not very mature yet. It does not
cover some basic corner cases such as packet retransmissions and
out of order or missing packets.

Read a packet_in event into flows (assumes class instantiated as
an object called ‘flow’):

flow.ingest_packet(dpid, in_port, pkt, timestamp)

Variables available for Classifiers (assumes class instantiated as
an object called ‘flow’):

Variables for the current packet:

	flow.packet.flow_hash

	The hash of the 5-tuple of the current packet

	flow.packet.packet_hash

	The hash of the current packet used for deduplication.
It is an indexed uni-directionally packet identifier,
derived from ip_src, ip_dst, proto, tp_src, tp_dst,
tp_seq_src, tp_seq_dst

	flow.packet.dpid

	The DPID that the current packet was received from
via a Packet-In message

	flow.packet.in_port

	The switch port that the current packet was received on
before being sent to the controller

	flow.packet.timestamp

	The time in datetime format that the current packet was
received at the controller

	flow.packet.length

	Length in bytes of the current packet on wire

	flow.packet.eth_src

	Ethernet source MAC address of current packet

	flow.packet.eth_dst

	Ethernet destination MAC address of current packet

	flow.packet.eth_type

	Ethertype of current packet in decimal

	flow.packet.ip_src

	IP source address of current packet

	flow.packet.ip_dst

	IP destination address of current packet

	flow.packet.proto

	IP protocol number of current packet

	flow.packet.tp_src

	Source transport-layer port number of current packet

	flow.packet.tp_dst

	Destination transport-layer port number of current packet

	flow.packet.tp_flags

	Transport-layer flags of the current packet

	flow.packet.tp_seq_src

	Source transport-layer sequence number (where existing)
of current packet

	flow.packet.tp_seq_dst

	Destination transport-layer sequence number (where existing)
of current packet

	flow.packet.payload

	Payload data of current packet

	flow.packet.tcp_fin()

	True if TCP FIN flag is set in the current packet

	flow.packet.tcp_syn()

	True if TCP SYN flag is set in the current packet

	flow.packet.tcp_rst()

	True if TCP RST flag is set in the current packet

	flow.packet.tcp_psh()

	True if TCP PSH flag is set in the current packet

	flow.packet.tcp_ack()

	True if TCP ACK flag is set in the current packet

	flow.packet.tcp_urg()

	True if TCP URG flag is set in the current packet

	flow.packet.tcp_ece()

	True if TCP ECE flag is set in the current packet

	flow.packet.tcp_cwr()

	True if TCP CWR flag is set in the current packet

	flow.packet_direction()

	c2s (client to server) or s2c direction of current packet

Variables for the whole flow:

	flow.packet_count()

	Unique packets registered for the flow

	flow.client()

	The IP that is the originator of the flow

	flow.server()

	The IP that is the destination of the flow

	flow.packet_directions()

	List of packet directions for the flow

	flow.packet_sizes()

	List of packet sizes (lengths, in bytes) for the flow

	flow.max_packet_size()

	Size of largest packet in the flow in bytes

	flow.max_interpacket_interval()

	Maximum directional time difference between packets

	flow.min_interpacket_interval()

	Minimum directional time difference between packets

	flow.interpacket_interval_ratios()

	Time ratios between packets based on pkt1-2 interval

The Flow class also includes the record_removal method
that records a flow removal message from a switch to database

	Challenges (not handled - yet):

	
	duplicate packets due to retransmissions

	IP fragments

	Flow reuse - TCP source port reused

	
class Packet

	Bases: object

An object that represents the current packet

	
dbdict()

	Return a dictionary object of metadata
parameters of current packet (excludes payload),
for storing in database

	
tcp_fin()

	Does the current packet have the TCP FIN flag set?

	
tcp_syn()

	Does the current packet have the TCP SYN flag set?

	
tcp_rst()

	Does the current packet have the TCP RST flag set?

	
tcp_psh()

	Does the current packet have the TCP PSH flag set?

	
tcp_ack()

	Does the current packet have the TCP ACK flag set?

	
tcp_urg()

	Does the current packet have the TCP URG flag set?

	
tcp_ece()

	Does the current packet have the TCP ECE flag set?

	
tcp_cwr()

	Does the current packet have the TCP CWR flag set?

	
class Classification(flow_hash, clsfn, time_limit, logger)

	Bases: object

An object that represents an individual traffic classification

	
test_query()

	Return database query execution statistics

	
dbdict()

	Return a dictionary object of traffic classification
parameters for storing in the database

	
commit()

	Record current state of flow classification into MongoDB
classifications collection.

	
class RemovedFlow(logger, flow_rems, msg, offset)

	Bases: object

An object that represents an individual removed flow.
This is a flow that a switch has informed us it has
removed from its flow table because of an idle timeout

	
dbdict()

	Return a dictionary object of parameters
from the removed flow for storing in the flow_rems
database collection

	
commit()

	Record removed flow into MongoDB
flow_rems collection.

	
record_removal(msg)

	Record an idle-timeout flow removal message.
Passed a Ryu message object for the flow removal.
Record entry in the flow_rems database collection

	
ingest_packet(dpid, in_port, packet, timestamp)

	Ingest a packet into the packet_ins collection and put the flow object
into the context of the packet.
Note that timestamp MUST be in datetime format

	
packet_count(test=0)

	Return the number of packets in the flow (counting packets in
both directions). This method deduplicates for where the
same packet is received from multiple switches, by filtering to
the DPID from which the first packet-in for the flow was received
(could be wrong in obscure corner cases).

Works by retrieving packets from packet_ins database with
current packet flow_hash and within flow reuse time limit.

Setting test=1 returns database query execution statistics

	
packet_direction()

	Return the direction of the current packet in the flow
where c2s is client to server and s2c is server to client.

	
packet_directions(test=0)

	Return the set of packet directions of all packets
recorded in the current flow, deduplicated for multiple switches.
Returns a list of directions per packet where 1 = forward
and 0 = reverse direction and oldest is the
left most position and newest on the right

	
packet_sizes(test=0)

	Return the set of packet sizes of all packets
recorded in the current flow, deduplicated for multiple switches.
Returns a list of sizes per packet where the oldest is the
left most position and newest on the right

	
client()

	Returns the IP that is the originator of the flow (if known,
otherwise 0)

Finds first packet seen for the flow_hash within the time limit
and returns a the source IP

	
origin()

	Returns the IP and DPID that is the originator of the flow (if known,
otherwise 0)

Finds first packet seen for the flow_hash within the time limit
and returns a tuple of the source IP and the dpid

	
server()

	The IP that is the destination of the flow (if known,
otherwise 0)

Finds first packet seen for the hash within the time limit
and returns the destination IP

	
max_packet_size()

	Return the size of the largest packet in the flow (in either direction)

	
max_interpacket_interval()

	Return the size of the largest inter-packet time interval
in the flow (assessed per direction in flow) as seconds
(type float)

Note:
c2s = client to server direction
s2c = server to client direction

Note: results are slightly inaccurate due to floating point
rounding.

	
min_interpacket_interval()

	Return the size of the smallest inter-packet time interval
in the flow (assessed per direction in flow) as seconds
(type float)

Note:
c2s = client to server direction
s2c = server to client direction

Note: results are slightly inaccurate due to floating point
rounding.

	
interpacket_interval_ratios()

	Return a list of flow interpacket time intervals expressed
as ratios of the first interpacket interval. For n packet,
will return n-2 time ratios (packet 1 to 2 is not returned as
will always be 1, since used as the ratio base)

	
not_suppressed(dpid, suppress_type)

	Check flow_mods to see if current flow context is already
suppressed within suppression stand-down time for that switch,
and if it is then return False, otherwise True

The stand-down time is to reduce risk of overloading switch
with duplicate suppression events.

Called from nmeta.py

	
class FlowMod(flow_mods, flow_hash, dpid, _type, standdown)

	Bases: object

An object that represents an individual Flow Modification,
used for recording the circumstances into the
flow_mods MongoDB collection

	
dbdict()

	Return a dictionary object of specific FlowMod
parameters for storing in the database

	
commit()

	Record removed mod into MongoDB
flow_mods collection.

	
record_suppression(dpid, suppress_type, result, standdown=0)

	Record that the flow is being suppressed on a particular
switch in the flow_mods database collection, so that information
is available to API consumers, such as the WebUI

identities module

The identities module is part of the nmeta suite

It provides an abstraction for participants (identities), using
a MongoDB database for storage and data retention maintenance.

Identities are identified via TBD....

There are methods (see class docstring) that provide harvesting
of identity metadata and various retrieval searches

	
class identities.Identities(config, policy, secondary=0)

	Bases: baseclass.BaseClass

An object that represents identity metadata

Main function used to harvest identity metadata:
(assumes class instantiated as an object called ‘ident’)

	ident.harvest(pkt, flow.packet)

	Passed a raw packet and packet metadata from flow object.
Check a packet_in event and harvest any relevant identity
indicators to metadata

Functions available for Classifiers:
(assumes class instantiated as an object called ‘ident’)

	ident.findbymac(mac_address)

	Look up identity object for a MAC address

	ident.findbynode(host_name)

	Look up identity object by host name (aka node)
Additionally, can set:

regex=True Treat service_name as a regular expression
harvest_type= Specify what type of harvest (i.e. DHCP)

	ident.findbyservice(service_name)

	Look up identity object by service name
Additionally, can set:

regex=True Treat service_name as a regular expression
harvest_type= Specify what type of harvest (i.e. DNS_A)
ip_address= Look for specific IP address

See function docstrings for more information

	
class Identity

	Bases: object

An object that represents an individual Identity Indicator

	
dbdict()

	Return a dictionary object of identity metadata
parameters for storing in the database

	
class DHCPMessage

	Bases: object

An object that represents an individual DHCP message.
Used for storing DHCP state by recording DHCP events

	
dbdict()

	Return a dictionary object of dhcp message
parameters for storing in the database

	
harvest(pkt, flow_pkt)

	Passed a raw packet and packet metadata from flow object.
Check a packet_in event and harvest any relevant identity
indicators to metadata

	
harvest_arp(pkt, flow_pkt)

	Harvest ARP identity metadata into database.
Passed packet-in metadata from flow object.
Check ARP reply and harvest identity
indicators to metadata

	
harvest_dhcp(flow_pkt)

	Harvest DHCP identity metadata into database.
Passed packet-in metadata from flow object.
Check LLDP TLV fields and harvest any relevant identity
indicators to metadata

	
harvest_lldp(flow_pkt)

	Harvest LLDP identity metadata into database.
Passed packet-in metadata from flow object.
Check LLDP TLV fields and harvest any relevant identity
indicators to metadata

	
harvest_dns(flow_pkt)

	Harvest DNS identity metadata into database.
Passed packet-in metadata from flow object.
Check DNS answer(s) and harvest any relevant identity
indicators to metadata

	
findbymac(mac_addr, test=0)

	Passed a MAC address and reverse search identities collection
returning first match as a dictionary version of
an Identity class, or empty dictionary if not found

Setting test=1 returns database query execution statistics

	
findbynode(host_name, harvest_type='any', regex=False, test=0)

	Find by node name
Pass it the name of the node to search for. Additionally,
can set:

regex=True Treat service_name as a regular expression
harvest_type= Specify what type of harvest (i.e. DHCP)

Returns a dictionary version of an Identity class, or 0 if not found

Setting test=1 returns database query execution statistics

	
findbyservice(service_name, harvest_type='any', regex=False, ip_address='any', test=0)

	Find by service name
Pass it the name of the service to search for. Additionally,
can set:

regex=True Treat service_name as a regular expression
harvest_type= Specify what type of harvest (i.e. DNS_A)
ip_address= Look for specific IP address

Returns an identity record or 0 if no match

Setting test=1 returns database query execution statistics

	
get_service_by_ip(ip_addr, test=0)

	Passed an IP address. Look this up in the identities
db collection. Returns the most recent identities record for this
IP address that has the a service_name, or 0 if no match.

Checks to see if service name is an alias for a CNAME and if it
is moves the service name to service alias and returns the CNAME
as the service name. Caution: returns the first CNAME and there
could be a many to one mapping... Also, does not recurse.

Setting test=1 returns database
query execution statistics

	
get_host_by_ip(ip_addr, test=0)

	Passed an IP address. Look this up in the identities
db collection. Returns the most recent identities record for this
IP address that has a host_name, or 0 if no match.

Setting test=1 returns database
query execution statistics

	
get_location_by_mac(mac_addr, test=0)

	Passed a MAC address. Look this up in the identities db collection
and return a source logical location string if present,
otherwise return 0. Setting test=1 returns database query
execution statistics

	
get_dns_cname(service_name, test=0)

	Passed a DNS A Record name. Look this up in the identities
db collection. Return the most recent CNAME
for this A Record or 0 if no match.

Setting test=1 returns database
query execution statistics

	
identities.mac_addr(address)

	Convert a MAC address to a readable/printable string

forwarding module

This module is part of the nmeta suite running on top of Ryu SDN
controller to provide network identity and flow metadata.
It provides methods for forwarding functions.

	
class forwarding.Forwarding(config)

	Bases: baseclass.BaseClass

This class is instantiated by nmeta.py and provides methods
for making forwarding decisions and transformations to packets.

	
basic_switch(event, in_port)

	Passed a packet in event and return an output port

switches module

This module is part of the nmeta suite running on top of Ryu SDN controller.

It provides classes that abstract the details of OpenFlow switches

	
class switches.Switches(config)

	Bases: baseclass.BaseClass

This class provides an abstraction for a set of OpenFlow
Switches.

It stores instances of the Switch class in a dictionary keyed
by DPID. The switch instances are accessible externally.

A standard (not capped) MongoDB database collection is used to
record switch details so that they can be accessed via the
external API.

	
add(datapath)

	Add a switch to the Switches class

	
stats_reply(msg)

	Read in a switch stats reply

	
delete(datapath)

	Delete a switch from the Switches class

	
class switches.Switch(config, datapath, offset)

	Bases: baseclass.BaseClass

This class provides an abstraction for an OpenFlow
Switch

	
dbdict()

	Return a dictionary object of switch
parameters for storing in the database

	
request_switch_desc()

	Send an OpenFlow request to the switch asking it to
send us it’s description data

	
set_switch_config(config_flags, miss_send_len)

	Set config on a switch including config flags that
instruct fragment handling behaviour and miss_send_len
which controls the number of bytes sent to the controller
when the output port is specified as the controller.

	
packet_out(data, in_port, out_port, out_queue, no_queue=0)

	Sends a supplied packet out switch port(s) in specific queue.

Set no_queue=1 if want no queueing specified (i.e. for a flooded
packet). Also use for Zodiac FX compatibility.

Does not use Buffer IDs as they are unreliable resource.

	
set_switch_table_miss(miss_send_len)

	Set a table miss rule on table 0 to send packets to
the controller. This is required for OF versions higher
than v1.0

	
class switches.FlowTables(config, datapath, offset)

	Bases: baseclass.BaseClass

This class provides an abstraction for the flow tables on
an OpenFlow Switch

	
suppress_flow(msg, in_port, out_port, out_queue)

	Add flow entries to a switch to suppress further packet-in
events while the flow is active.

Prefer to do fine-grained match where possible.
Install reverse matches as well for TCP flows.

Do not install suppression for these types of flow:
- DNS (want to harvest identity)
- ARP (want to harvest identity)
- DHCP (want to harvest identity)
- LLDP (want to harvest identity)

	
drop_flow(msg)

	Add flow entry to a switch to suppress further packet-in
events for a particular flow.

Prefer to do fine-grained match where possible.

TCP or UDP source ports are not matched as ephemeral

	
add_flow(match_d, actions, priority, idle_timeout, hard_timeout, cookie)

	Add a flow entry to a switch

	
actions(out_port, out_queue, no_queue=0)

	Create actions for a switch flow entry. Specify the out port
and QoS queue, and set no_queue=1 if don’t want QoS set.
Returns a list of action objects

	
match_ipv4_tcp(ipv4_src, ipv4_dst, tcp_src, tcp_dst)

	Match an IPv4 TCP flow on a switch.
Passed IPv4 and TCP parameters and return
an OpenFlow match object for this flow

	
match_ipv4_udp(ipv4_src, ipv4_dst, udp_src, udp_dst)

	Match an IPv4 UDP flow on a switch.
Passed IPv4 and UDP parameters and return
an OpenFlow match object for this flow

	
match_ipv6_tcp(ipv6_src, ipv6_dst, tcp_src, tcp_dst)

	Match an IPv6 TCP flow on a switch.
Passed IPv6 and TCP parameters and return
an OpenFlow match object for this flow

	
match_ipv6_udp(ipv6_src, ipv6_dst, udp_src, udp_dst)

	Match an IPv6 UDP flow on a switch.
Passed IPv6 and UDP parameters and return
an OpenFlow match object for this flow

	
match_ipv4(ipv4_src, ipv4_dst, ip_proto)

	Match an IPv4 flow on a switch.
Passed IPv4 parameters and return
an OpenFlow match object for this flow

	
match_ipv6(ipv6_src, ipv6_dst)

	Match an IPv6 flow on a switch.
Passed IPv6 parameters and return
an OpenFlow match object for this flow

	
switches._ipv4_t2i(ip_text)

	Turns an IPv4 address in text format into an integer.
Borrowed from rest_router.py code

nethash module

The nethash module is part of the nmeta suite

It provides functions for hashing packets and flows to
unique identifiers

	
nethash.hash_flow(flow_5_tuple)

	Generate a predictable flow_hash for the 5-tuple. For TCP
the hash is the same no matter which direction the traffic is
travelling for all packets that are part of that flow.

Pass this function a 5-tuple.

For TCP, this tuple should be:
(ip_src, ip_dst, tp_src, tp_dst, ip_proto)

For other IP packets, the tuple should be:
(eth_src, eth_dst, dpid, packet_timestamp, ip_proto)

For non-IP packets, the tuple should be:
(eth_src, eth_dst, dpid, packet_timestamp, 0)

	
nethash.hash_packet(packet)

	Generate a hash of flows packet object for use in deduplication
where the same packet is received from multiple switches.

Retransmissions of a packet that is part of a flow should have
same hash value, so that retransmissions can be measured.

The packet hash is a unique unidirectional packet identifier

	For TCP packets, the hash is derived from:

	ip_src, ip_dst, proto, tp_src, tp_dst, tp_seq_src, tp_seq_dst

	For non-flow packets, the hash is derived from:

	eth_src, eth_dst, eth_type, dpid, timestamp

	
nethash.hash_tuple(hash_tuple)

	Simple function to hash a tuple with MD5.
Returns a hash value for the tuple

 Python Module Index

 a |
 c |
 f |
 i |
 n |
 p |
 s |
 t

 		 	

 		
 a	

 	
 	
 api_external	

 		 	

 		
 c	

 	
 	
 config	

 		 	

 		
 f	

 	
 	
 flows	

 	
 	
 forwarding	

 		 	

 		
 i	

 	
 	
 identities	

 		 	

 		
 n	

 	
 	
 nethash	

 	
 	
 nmeta	

 		 	

 		
 p	

 	
 	
 policy	

 		 	

 		
 s	

 	
 	
 switches	

 		 	

 		
 t	

 	
 	
 tc_custom	

 	
 	
 tc_identity	

 	
 	
 tc_static	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | V

_

 	
 	_ipv4_t2i() (in module switches)

 	
 	_port_status_handler() (nmeta.NMeta method)

A

 	
 	accumulate() (policy.TCConditionResult method)

 	(policy.TCRuleResult method)

 	actions() (switches.FlowTables method)

 	
 	add() (switches.Switches method)

 	add_flow() (switches.FlowTables method)

 	add_rule_actions() (policy.TCRuleResult method)

 	api_external (module)

B

 	
 	basic_switch() (forwarding.Forwarding method)

C

 	
 	check() (policy.Location method)

 	check_custom() (tc_custom.CustomInspect method)

 	check_dhcp() (tc_identity.IdentityInspect method)

 	check_dns() (tc_identity.IdentityInspect method)

 	check_identity() (tc_identity.IdentityInspect method)

 	check_lldp() (tc_identity.IdentityInspect method)

 	check_policy() (policy.Policy method)

 	check_static() (tc_static.StaticInspect method)

 	
 	check_tc_condition() (policy.TCCondition method)

 	check_tc_rule() (policy.TCRule method)

 	client() (flows.Flow method)

 	commit() (flows.Flow.Classification method)

 	(flows.Flow.FlowMod method)

 	(flows.Flow.RemovedFlow method)

 	Config (class in config)

 	config (module)

 	CustomInspect (class in tc_custom)

D

 	
 	dbdict() (flows.Flow.Classification method)

 	(flows.Flow.FlowMod method)

 	(flows.Flow.Packet method)

 	(flows.Flow.RemovedFlow method)

 	(identities.Identities.DHCPMessage method)

 	(identities.Identities.Identity method)

 	(switches.Switch method)

 	
 	delete() (switches.Switches method)

 	desc_stats_reply_handler() (nmeta.NMeta method)

 	drop_flow() (switches.FlowTables method)

E

 	
 	enumerate_eth_type() (in module api_external)

 	enumerate_ip_proto() (in module api_external)

 	
 	error_msg_handler() (nmeta.NMeta method)

 	ExternalAPI (class in api_external)

 	ExternalAPI.FlowUI (class in api_external)

F

 	
 	findbymac() (identities.Identities method)

 	findbynode() (identities.Identities method)

 	findbyservice() (identities.Identities method)

 	Flow (class in flows)

 	Flow.Classification (class in flows)

 	Flow.FlowMod (class in flows)

 	Flow.Packet (class in flows)

 	Flow.RemovedFlow (class in flows)

 	
 	flow_augment_record() (api_external.ExternalAPI method)

 	flow_match() (api_external.ExternalAPI method)

 	flow_normalise_direction() (api_external.ExternalAPI method)

 	flow_removed_handler() (nmeta.NMeta method)

 	flows (module)

 	FlowTables (class in switches)

 	Forwarding (class in forwarding)

 	forwarding (module)

G

 	
 	get_classification() (api_external.ExternalAPI method)

 	get_dns_cname() (identities.Identities method)

 	get_dns_ip() (api_external.ExternalAPI method)

 	get_flow_client_ip() (api_external.ExternalAPI method)

 	get_flow_data_xfer() (api_external.ExternalAPI method)

 	get_host_by_ip() (identities.Identities method)

 	get_id() (api_external.ExternalAPI method)

 	
 	get_location() (policy.Locations method)

 	get_location_by_mac() (identities.Identities method)

 	get_pi_rate() (api_external.ExternalAPI method)

 	get_pi_time() (api_external.ExternalAPI method)

 	get_port_set() (policy.PortSets method)

 	get_service_by_ip() (identities.Identities method)

 	get_value() (config.Config method)

H

 	
 	harvest() (identities.Identities method)

 	harvest_arp() (identities.Identities method)

 	harvest_dhcp() (identities.Identities method)

 	harvest_dns() (identities.Identities method)

 	harvest_lldp() (identities.Identities method)

 	
 	hash_flow() (in module nethash)

 	hash_packet() (in module nethash)

 	hash_tuple() (in module nethash)

 	hovertext_eth_type() (in module api_external)

 	hovertext_ip_addr() (in module api_external)

 	hovertext_ip_proto() (in module api_external)

I

 	
 	Identities (class in identities)

 	identities (module)

 	Identities.DHCPMessage (class in identities)

 	Identities.Identity (class in identities)

 	IdentityInspect (class in tc_identity)

 	ingest_config_default() (config.Config method)

 	ingest_config_file() (config.Config method)

 	ingest_config_user() (config.Config method)

 	ingest_packet() (flows.Flow method)

 	inherit_logging() (config.Config method)

 	instantiate_classifiers() (tc_custom.CustomInspect method)

 	
 	interpacket_interval_ratios() (flows.Flow method)

 	ipv4_text_to_int() (in module nmeta)

 	is_match_ethertype() (tc_static.StaticInspect method)

 	is_match_ip_space() (tc_static.StaticInspect method)

 	is_match_macaddress() (tc_static.StaticInspect method)

 	is_match_time_of_day() (tc_static.StaticInspect method)

 	is_member() (policy.PortSet method)

 	is_valid_ethertype() (tc_static.StaticInspect method)

 	is_valid_ip_space() (tc_static.StaticInspect method)

 	is_valid_macaddress() (tc_static.StaticInspect method)

 	is_valid_transport_port() (tc_static.StaticInspect method)

L

 	
 	Location (class in policy)

 	
 	Locations (class in policy)

M

 	
 	mac_addr() (in module identities)

 	match_ipv4() (switches.FlowTables method)

 	match_ipv4_tcp() (switches.FlowTables method)

 	match_ipv4_udp() (switches.FlowTables method)

 	match_ipv6() (switches.FlowTables method)

 	
 	match_ipv6_tcp() (switches.FlowTables method)

 	match_ipv6_udp() (switches.FlowTables method)

 	max_interpacket_interval() (flows.Flow method)

 	max_packet_size() (flows.Flow method)

 	min_interpacket_interval() (flows.Flow method)

N

 	
 	nethash (module)

 	NMeta (class in nmeta)

 	
 	nmeta (module)

 	not_suppressed() (flows.Flow method)

O

 	
 	OFP_VERSIONS (nmeta.NMeta attribute)

 	
 	origin() (flows.Flow method)

P

 	
 	packet_count() (flows.Flow method)

 	packet_direction() (flows.Flow method)

 	packet_directions() (flows.Flow method)

 	packet_in() (nmeta.NMeta method)

 	packet_out() (switches.Switch method)

 	
 	packet_sizes() (flows.Flow method)

 	PITelemetry (class in nmeta)

 	Policy (class in policy)

 	policy (module)

 	PortSet (class in policy)

 	PortSets (class in policy)

Q

 	
 	qos() (policy.Policy method)

 	
 	QoSTreatment (class in policy)

R

 	
 	record_outcome() (nmeta.PITelemetry method)

 	record_removal() (flows.Flow method)

 	record_suppression() (flows.Flow method)

 	request_switch_desc() (switches.Switch method)

 	response() (api_external.ExternalAPI.FlowUI method)

 	response_controller_summary() (api_external.ExternalAPI method)

 	response_flows_removed_dst_bytes_received() (api_external.ExternalAPI method)

 	response_flows_removed_dst_bytes_sent() (api_external.ExternalAPI method)

 	
 	response_flows_removed_src_bytes_received() (api_external.ExternalAPI method)

 	response_flows_removed_src_bytes_sent() (api_external.ExternalAPI method)

 	response_flows_removed_stats_count() (api_external.ExternalAPI method)

 	response_flows_ui() (api_external.ExternalAPI method)

 	response_identities_ui() (api_external.ExternalAPI method)

 	response_pi_rate() (api_external.ExternalAPI method)

 	response_pi_time() (api_external.ExternalAPI method)

 	response_switches_count() (api_external.ExternalAPI method)

 	run() (api_external.ExternalAPI method)

S

 	
 	server() (flows.Flow method)

 	set_switch_config() (switches.Switch method)

 	set_switch_table_miss() (switches.Switch method)

 	StaticInspect (class in tc_static)

 	stats_reply() (switches.Switches method)

 	
 	suppress_flow() (switches.FlowTables method)

 	Switch (class in switches)

 	switch_connection_handler() (nmeta.NMeta method)

 	switch_down_handler() (nmeta.NMeta method)

 	Switches (class in switches)

 	switches (module)

T

 	
 	tc_custom (module)

 	tc_identity (module)

 	tc_static (module)

 	TCClassifierResult (class in policy)

 	TCCondition (class in policy)

 	TCConditionResult (class in policy)

 	tcp_ack() (flows.Flow.Packet method)

 	tcp_cwr() (flows.Flow.Packet method)

 	tcp_ece() (flows.Flow.Packet method)

 	
 	tcp_fin() (flows.Flow.Packet method)

 	tcp_psh() (flows.Flow.Packet method)

 	tcp_rst() (flows.Flow.Packet method)

 	tcp_syn() (flows.Flow.Packet method)

 	tcp_urg() (flows.Flow.Packet method)

 	TCRule (class in policy)

 	TCRuleResult (class in policy)

 	TCRules (class in policy)

 	test_query() (flows.Flow.Classification method)

 	transform_ports() (in module policy)

V

 	
 	validate() (in module policy)

 	validate_ethertype() (in module policy)

 	validate_ip_space() (in module policy)

 	validate_location() (in module policy)

 	validate_macaddress() (in module policy)

 	
 	validate_macaddress_OLD() (in module policy)

 	validate_port_set_list() (in module policy)

 	validate_ports() (in module policy)

 	validate_time_of_day() (in module policy)

 	validate_type() (in module policy)

Quick Start Guide

[image: _images/quickstart_number_1.png]
First, you’ll need an OpenFlow Network with one or more switches.
If you don’t have a suitable one to hand then consider building the virtual
lab in the Extras section

[image: _images/quickstart_number_2.png]
Next, you’ll need an SDN Controller to run the control plane of the
network and host the nmeta application. If you built the virtual lab then
you’ve already got this covered.

If not, build a physical or virtual server. The preferred OS is Ubuntu.
Now install Ryu and nmeta as per the Install Guide

[image: _images/quickstart_number_3.png]
You’ll need some participants (hosts) on your network. Again, if you’ve
built the virtual lab you’re already covered for this.

If not, decide what types and numbers of hosts you want on your network,
then connect them up.

[image: _images/quickstart_number_4.png]
Configure nmeta as per the Config Guide

[image: _images/quickstart_number_5.png]
Run nmeta:

cd; cd ryu; PYTHONPATH=. ./bin/ryu-manager ../nmeta/nmeta/nmeta.py

Now start experimenting. Use the calls in the aliases to show network metadata

 _images/flows_abstraction.png
Packet-In Packet

Packet-In Flow

Identification

flow_hash

Flow Behaviour
packet_count()
client()

server()

packet_directions()
packet_sizes()
max_packet_size()
max_interpacket_interval()
min_interpacket_interval()

Flow Classification

‘classification’
classified \
classification_tag
classification_time
actions(}
commit() \

Ingest a Packet-In Event
ingest_packet(dpid,
—— in_port, pkt, timestamp)

‘packet Packet-n svent creates packetins col record
Identification Environmental
<flow_hash dpid
packet_hash in_port
timestamp

1ye
eth_src
oth_dst

eth_type

Layer-3
ip_src
ip_dst
proto

Layer-4
tp_src
tp_dst
tp_flags

tp_seq_src
tp_seq_dst

Layer7
payload

length

tored in packet-ins.

Galculated Values
packet_direction()

TCP-specific Flags.
top_fin

tep_syn

top_rst

tep_psh
tep_ack
top_urg
top_ece

tep_cwr

_images/flow_mods.png
Documents in the flow_mods MongoDB collection are immutable, so that they can be stored in a
capped collection, which Is fast and automatically overwrites oldest documents when It reaches
max size in bytes. Documents in capped collections cannot be increased in size, so it s easiest (o
treat them as immutable. Their data can be mined for flow metadata, packet data and performance

metrics.

‘flow_mods"’ I
_id

$flow_hash
dpid
Itimesramp
$suppress_type
¢standdown
$match_type
$forward_cookie
$forward_match
treverse_cookie
treverse_match

sclient_ip

Valid suppress_type values are:
“Suppress" forwards the flow on the
switch such that it doesn't send more
packets (o the controller

‘drop': drops all packes i this flow at
the switch

Reduce risk of overloading switch with
duplicale suppression events. If 1 then
already suppressed recently so don't mod

Match type set by switches module
(ignorelsingleldual). Ignore means no mod,
dual had forward and reverse mods

- Urique vlue per fow mod, st by nmeta_|

matches are dict objects of the flow match

~~ parameters. Revarse only used in
match,_type of dual (TCP flows)

. 1P address of client n flow (st seen) or O i
not known

_images/quickstart_number_1.png
. Opentiow OpenFiow

_images/webui-home.png
nmeta home who whatv kitv policy

% nmeta

The metadata-driven network controller

_images/webui_architecture.png
Other API
consumers

bootstrap.cas
(e et

bootstrapis

Ryu
nmeta app

Database
i i 1
| CZI classifications low_rems JH i_time ‘switches |
i i :
i s
.)

_images/quickstart_number_5.png

_images/simple_tc_policy.png
Traffic classification rules root
tc_rules:*

Traffic Classification Rulesets and Rules
to_ruleset 11 <— Rulesct Name
- comment: OpenFlow Protocol Traffic

match_type: any L
conditions_list: Must contain a match_type

Rule signified by preceding list dash
A condition, containing match_type and classifiers list
actions:

set_desc: "OpenFlow Protocol Traffic" Actions Stanza
qos_treatment: high_priority

_images/nmeta.png
11010010101011001001001011| P — QoS Low Priority 0010010010111010100101
0101001011101001010101 pwn Identity, Suspiciou: 00101010110010010010111

_static/up.png

_images/nmeta_concept.png
Conversations

Participants
User dentty
. bob@example. com
System identity Flow Enrichment
l.e. Application=Intranet,
Shurtyenormal

Qos.reatmentesiver

o

!

. deskiop10.example.com
|
|

System Services
e, web server

System Features

e SysDescr: Ubuniu precise, i

PortDescr: ethi |

.) !

I

/ I

What enterprise networks
generally know today.

!

h
Metadata that can be.
added by nmeta

_images/identities.png
‘The identities database collection is a view of network participants. Points (o consider:

- Assumed that a participant always has an P address (beware: this may not always hold true)

~Any vaid [P version (ie. IPvd o IPv6)

- An IP address can be shared by multiple participants concurrently (examples: participants behind a proxy server or
sharing a server)

~An P adress may bo dedicatad fo a partcpart, butony fo a peiod offme (example: DHCP-assigned addross on
WiF)

in_port

mac_address
Vaid havest_type values are:

¢ip_address ARP
oice

fharvest_type —— wuop

_ ONS_A
$harvest_time DNS_CNAME
¢host_name
$host_type
fhost_os
fhost_desc

¢service_name

¢service_alias

Yuser._i

$valid_from

5 The id_hash s used for identy de-duplicaton. i
qvalid_to derived fom mao_acdress, ip_adress, harvest_{ype.
hosl_name, service_name, user_id

¢id_hash

Slocati jcal - Thelocation.logical key s a user-defned siring
loCaanNglEEl Jerived through policy from the source dpid/port

slocation_physical -

‘The location_physical key is a placeholder for a future.
* description of the identity physical location based on
inputs such as RF triangulation

_static/down-pressed.png

_static/ajax-loader.gif

_static/down.png

nav.xhtml

 Table of Contents

 		nmeta

 		Introduction

 		How it Works

 		Limitations

 		Feature Enhancement Wishlist

 		Privacy Considerations

 		Disclaimer

 		How to Contribute

 		Recipes

 		Parental Control Recipe

 		Main Policy

 		LAN Traffic Clean-up

 		Main Policy

 		Quality of Service (QoS) Recipe

 		Main Policy

 		ML Training Data Collector

 		Main Policy

 		Install

 		Pre-Work

 		Ensure packages are up-to-date

 		Install Debian Packages

 		Install Python Packages

 		Install MongoDB

 		Install nmeta

 		Test nmeta

 		Run nmeta

 		Test WebUI

 		Configure Switches

 		Configure OpenFlow

 		Configure QoS Queues

 		Aliases

 		Configure

 		Main Policy

 		Create Your Own Policy

 		TC Branch - Rules

 		TC Branch - Static Classifiers

 		TC Branch - Identity Classifiers

 		TC Branch - Custom Classifiers

 		TC Branch - Actions

 		QoS Treatment Branch

 		Port Sets Branch

 		Locations Branch

 		System Config

 		Build a Lab

 		Physical Labs

 		OpenWRT with Open vSwitch

 		Virtual Labs

 		Mininet with Vagrant

 		VirtualBox with Vagrant

 		Web UI

 		APIs

 		Flow APIs

 		Flow Mods API

 		Flows API

 		Flows UI API

 		Flows Removed API

 		Classifications

 		Identity APIs

 		Identities API

 		Identities UI API

 		Infrastructure APIs

 		Controller Summary API

 		PI Rate API

 		PI Time API

 		Switches API

 		Internal APIs

 		Extend Nmeta

 		Custom Classifiers

 		Develop

 		Code Structure

 		Data Structures

 		Information Abstractions

 		Database Collections

 		Logging

 		Code Documentation

 		nmeta module

 		policy module

 		tc_static module

 		tc_identity module

 		tc_custom module

 		api_external module

 		config module

 		flows module

 		identities module

 		forwarding module

 		switches module

 		nethash module

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_images/OpenWRT_build_1.png
Openiirt Conf iguration:
Arrou keys mavigate the nem. Enter> selects subnemus ——> (or enpty subnenus ——-).
Highlighted letters are hotkeys. Pressing <> includes, aF> excludes, <> modularizes
Features. Press CBsc>CEsc> to exit, <P> for Help, </> for Search. Legend: (=] built-in
1 excluded db nodule < > module capable.

Target Systen (Atheros ARPooK/ARIO).
Subtarget (Generic)

farget Prof INKTL-UR1043M D)
Target. Inages.

Global build settings —>

Advanced conf iguration options (for developers)
Build the Openrt. Inage Builder

Build the Openlirt SDK

Package the Gpenit-based Toolchain
Inage contiguration

Base systen —

Adninistration

Boot Loaders

Developnent —

Extra packages

Firnare ——>

Fonts —>

Kernel rodules

Languages —>

Libraries —>

Ll

CEit> <Help> <Sawe> <lLoad>

_images/identities_abstraction.png
Check for / harvest Identity Indicator Internal Identity Structure
— harvest(raw_pkt, flow_pkt) Identiy
Internal Harvest Methods. dpid
harvest_arp(raw_pkt, flow_pkt) in_port
harvest_dhcp(raw_pkt, flow_pkt) mac_address
harvest_lidp(raw_pkt, flow_pkt) ip_address
harvest_dns(raw_pkt, flow_pkt) harvest_type
harvest_time
Identity Lookups host_name
findbymac(mac) HoRINE
findbynode(host_name + opts) ot¥os
findbyservice(service_name + opts) host_desc
service_name

service_alias
user_id
valid_from
valid_to

id_hash
location_logical
location_physical

_images/data_struct_packet_ins.png

_images/dhcp_v4.png
‘dhcp_messages'

_id
dpid
in_port
ingest_time
eth_src
eth_dst

ip_dst

tp_src

tp_dst
transaction_id
message_type
host_name
ip_assigned
_dhcp_server —
lease_time

_images/OpenWRT_build_4.png
Do you wish 1o save your new configuration?
(Press <ESC><ESC> to continue kernel conf iguration.)

I <M >

_images/quickstart_number_2.png

_images/data_struct_pi_time.png
Documents in the pi_time MongoDB collection are immutable, so that they can be stored in a capped collection,
‘whichIs fast and automatically overwrites oldest documents when it reaches max size in byles. Documents in
capped collections cannot be increased in size, 5o i s easiest o treat them as immutable.

pi_delta s the time in
seconds nmeta took to
" process this packet_in event

i P

T ‘outcome is one of:

outcome e« drop_same_port
arop_reserved. mac

timestamp. arop_acion (dropped by poicy)

« packet_out_flooded
 packet_out

timestamp is the time when
this record was created

_images/nmeta_code_structure_simple.png

_images/quickstart_number_4.png

_images/flow_rems.png

_images/OpenWRT_build_2.png
Hetuork Support.
frrou keys navigate the memi. <Enter> selects subnemis —> (or empty subnemus ——).
jhlighted letters are hotkeys. Pressing <f> Includes, > excludes, <> nodularizes
features. Press <Bsc>CEsc> to exit, <1> for Help, <> for Search. Legend: [a] built-in
[excluded 0D module < > modulé capable
e
<> knod-openusuitch. Open uSuitch Kernel Package (N
<> fmod-phtgen. ... secace “1.2 Netuork packet generator
PP nodules
“Microsoft PP conpression/encruption
< PPP sync tty support
~ PPPon support.
- PPPOE support
PPROLZTP support
PPPOX helper
PPEP support
Extra traffic schedulers
bocro - Cake £q codel/blue derived shaper
knod-—sched-conmark. Traffic e shaper comtrack mark support
knod-—sched-core . " Traffic schedulers
knod-—sched-esfq . 11 traffic shaper ESFQ support
knod-sctp. 'SCTP protocol kernel support
knod-sit TPu6-in-Pv4. tumnel
Knod-s1ip. ... s SLIP modules
knod-—stp. . Ethernet Spanning Tree Protocol support
knod-tre}

Hietiiee]

knod-udptumeld. ... “oisueae IPvd UDP tumneling support
knod-udptumel6. * IPu6 UDP tumeling support

<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<
<>
<
1

<Edt> cHelp> <Sae> <load >

_images/policy_hierarchy.png
to_rules
ruleset

tc_ruleset_1

Tule-

comment: str
match_type: any | all | none
conditions_list:

-condition-

match_type: any | all | none
classifiers_list:

s classifier_

classifier_type: value

more classifiers.

ordered list of rules
classifiers

ordered [i

ordered list of con

‘more conditions...

more rules...

_images/OpenWRT_build_3.png
‘Open vSuitch

Arrou keys navigate the menu. CEnter> selects subnenus ——-> (or enpty subnenus ——)
Highlighted letters are hotkeys. Pressing <t includes, <> excludes, {> modularizes.
Features. FPress <Esc><Esc> to exit, <> for Help, <> for Search. Legend: [x] built-in
1 excluded db> nodule < > nodule capable

Tech

openusuitch-base. .- Open uSuitch Userspace Package (base)
openusuitch-ovs-appet] 2 .. Open uSuitch app control utility
openusuitch-ovs-dpet]. - Open uSuitch datapath managenent utility
openusuitch-ovs-ofctl. Open uSuitch OpenFlow control utility
openusuitch-ovs-usctl ﬂlzn “Suitch ovs-vsuitchd managenent utility
openusuitch-ovsdb-client - Open uSuitch databese JSINCREC client
openusuitch-python. > Open uSuitch Python Support.

CExit> <Help>

_images/data_struct_classifications.png
‘The classifications database collection s holds a record of traffic classifications made by nmeta,
along with actions to take. Points to consider:

~The classiffed flag says whether or not more packels need to be seen to make a determination

‘classifications’
_id
flow_hash
classified()
classification_type
classification_tag
classification_time
actions()

_images/complex_tc_policy.png
_o— Traffic classification rules root
tc_rules:
Traffic Classification Rulesets and Rules
to_ruleset_1: <— Ruleset Name
#
A static rule:

- comment: OpenFlow Protocol Traffic Rule signified by preceding list dash

Must contain a match_type

conditions_list:

A condition, containing match_type and
classifiers_list

actions:
set_desc: "OpenFlow Protocol Traffic"
qos_treatment: high_priority

Actions Stanza

#

An identity rule:

- comment: Audit Division SSH traffic
match_type: all Rule
conditions_list:

- o
Second
condition in list

actions:
set_desc: "High Priority Audit SSH Traffic”
qos_treatment: high_priority

Actions Stanza

A custom rule:

- comment: Constrained Bandwidth Traffic (Statistical)
match_type: any Rule
conditions_list:

_ T

actions: . N
set_desc: classifier_return Actions Stanza. Custom classifier

qos_treatment: classifier_retum T¢turns more than a Boolean

_images/Physical-Open-vSwitch-Lab-L3.png
«,>

4

Broadband Router
(n0n-OpenFlow, has
DHCP v server)

Net 192.168.1.024

Net 192,166 20124 > OpenFiow
/

\
2z 192168325 sy

Wired and wireless clients connected
through OpenFlow switch
(on 192.168.1.0/24 subnet)

Glent Taffc Interconnact

_images/quickstart_number_3.png

_images/TPLink_Internals.png
Wireless controlled by Open

vSwitch

S

wilan0

]
brlan
192.168.3.20

Open vSwitch
idge br0

Port 4 Port 3 Port 2 Port 1 /J
| | |
Ports controlled by Open Backup Out of Band
vSwitch Admin OpenFlow
and Admin
Connection to

rest of network

_images/OpenWRT_build_5.png
Netuorking options.
frrou keys navigate the nem. <Enter> selects subnenus ——> (or enpty subnenus ——.
Highlighted letters are hotkeys. Pressing <1 Includes, d¥> excludes, 1> modularizes
features. Press CEsc>CEsc> to exit, <D for Help, </> for Search. Legend: (=] built-in
L) excluded AP nodule < > nodule capable

Tt

[1 ULaN filtering

<> Distributed Suitch Architecture

<#> 802.10/802.1ad ULAN Support

1 GURP (GARP ULAN Registration Protocol) support
1 MURP (ltiple ULAN Registration Protocol) support

> DECnet Support.

> ANSI/IEEE 802.2 LLC type 2 Support

> The IPX protocol

> fppletalk protocol support.

> CCITT X.25 Packet Layer

> LAPB Data Link Driver

> Fhonet protocols fanily

> IEEE Std 802.15.4 Lou-Rate Uireless Personal fArea Netuorks support
e QueueingSchedul ing wo

> Class Based Queueing (CBQ)

[co> Hierarchical Token Bucket (HTB)
> Hierarchical Fair Service Curve (HFSC)

> Hulti Band Priority Queucing (PRID)
> Harduare Multiqueue-auare Hulti Band Queuing (WULTIQ)
> Randon Early Detection (RED)

> Stochastic Fair Blue (SFB)

>
>

«
<
<
<
<
<
<
<
<

Stochastic Fairness Queueing (SFQ)
Enhanced Stochastic Fairness Queueing (ESFQ)
>

¢

GEEEE <Exit> <Help> <Sawe> < Load>

_images/nmeta_logical_core.png
S (@)

Suppress Output
Sat fowntriesin ‘Send packet i
switches fo suppress flow appropriae)
packet-n ovents i
‘appropriats)

v

Packet-In ‘Add Flow Entries Packet-Out

